Wu Zhenqin, Boen Joseph, Jindal Sonali, Basu Sreyashi, Bieniosek Matthew, He Siyu, LaPelusa Michael, Mayer Aaron T, Kaseb Ahmed O, Zou James, Sharma Padmanee, Trevino Alexandro E
Enable Medicine, Menlo Park 94025, CA USA.
School of Computing and Data Science, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR.
bioRxiv. 2025 Jun 12:2025.06.11.656869. doi: 10.1101/2025.06.11.656869.
Despite advances in immunotherapy treatment, nonresponse rates remain high, and mechanisms of resistance to checkpoint inhibition remain unclear. To address this gap, we performed spatial transcriptomic and proteomic profiling on human hepatocellular carcinoma tissues collected before and after immunotherapy. We developed an interpretable, multimodal deep learning framework to extract key cellular and molecular signatures from these data. Our graph neural network approach based on spatial proteomic inputs achieved outstanding performance (ROC-AUC > 0.9) in predicting patient treatment response. Key predictive features and associated spatial transcriptomic profiles revealed the multi-omic landscape of immunotherapy response and resistance. One such feature was an interface niche expressing restrictive extracellular matrix factors that physically separates tumor tissue and lymphoid aggregates in nonresponders. We integrate this and other spatially-resolved signatures into SPARC, a multi-omic "fingerprint" comprising scores for immunotherapy response and resistance mechanisms. This study lays groundwork for future patient stratification and treatment strategies in cancer immunotherapy.
尽管免疫治疗取得了进展,但无反应率仍然很高,对检查点抑制的耐药机制仍不清楚。为了填补这一空白,我们对免疫治疗前后收集的人类肝细胞癌组织进行了空间转录组学和蛋白质组学分析。我们开发了一个可解释的多模态深度学习框架,以从这些数据中提取关键的细胞和分子特征。我们基于空间蛋白质组学输入的图神经网络方法在预测患者治疗反应方面表现出色(ROC-AUC>0.9)。关键预测特征和相关的空间转录组图谱揭示了免疫治疗反应和耐药性的多组学景观。其中一个特征是一个界面小生境,它表达限制性细胞外基质因子,在无反应者中物理上分隔肿瘤组织和淋巴聚集物。我们将这一特征和其他空间分辨特征整合到SPARC中,这是一种多组学“指纹”,包括免疫治疗反应和耐药机制的评分。这项研究为癌症免疫治疗中未来的患者分层和治疗策略奠定了基础。