Tubelleza Rafael, Kilgallon Aaron, Tan Chin Wee, Monkman James, Fraser John F, Kulasinghe Arutha
Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia.
Queensland Spatial Biology Centre, W esley Research Institute, The Wesley Hospital, Brisbane, QLD 4066, Australia.
NAR Genom Bioinform. 2025 Aug 21;7(3):lqaf114. doi: 10.1093/nargab/lqaf114. eCollection 2025 Sep.
Tissue microarrays (TMAs) enable researchers to analyse hundreds of tissue samples simultaneously by embedding multiple samples into single arrays, enabling conservation of valuable tissue samples and experimental reagents. Moreover, profiling TMAs allows efficient screening of tissue samples for translational and clinical applications. Multiplexed imaging technologies allow for spatial profiling of proteins at single-cell resolution, providing insights into tumour microenvironments and disease mechanisms. High-plex spatial single-cell protein profiling is a powerful tool for biomarker discovery and translational cancer research; however, there remain limited options for end-to-end computational analysis of this type of data. Here, we introduce PRISM, a Python package for interactive, end-to-end analyses of TMAs with a focus on translational and clinical research using multiplexed proteomic data. PRISM leverages the SpatialData framework to standardize data storage and ensure interoperability with single-cell and spatial analysis tools. It consists of two main components: TMA Image Analysis for marker-based tissue masking, TMA dearraying, cell segmentation, and single-cell feature extraction; and AnnData Analysis for quality control, clustering, iterative cell-type annotation, and spatial analysis. Integrated as a plugin within napari, PRISM provides an intuitive and purely interactive graphical interface for real time and human-in-the-loop analyses. PRISM supports efficient multi-resolution image processing and accelerates bioinformatics workflows using efficient scalable data structures, parallelization and GPU acceleration. By combining modular flexibility, computational efficiency, and a completely interactive interface, PRISM simplifies the translation of raw multiplexed images to actionable clinical insights, empowering researchers to explore and interact effectively with spatial omics data.
组织微阵列(TMAs)使研究人员能够通过将多个样本嵌入单个阵列中同时分析数百个组织样本,从而节省珍贵的组织样本和实验试剂。此外,对TMAs进行分析可有效筛选组织样本以用于转化研究和临床应用。多重成像技术能够在单细胞分辨率下对蛋白质进行空间分析,从而深入了解肿瘤微环境和疾病机制。高多重空间单细胞蛋白质分析是生物标志物发现和转化癌症研究的有力工具;然而,对于这类数据的端到端计算分析,选择仍然有限。在这里,我们介绍PRISM,这是一个用Python编写的软件包,用于对TMAs进行交互式的端到端分析,重点是使用多重蛋白质组学数据进行转化研究和临床研究。PRISM利用SpatialData框架来标准化数据存储,并确保与单细胞和空间分析工具的互操作性。它由两个主要组件组成:用于基于标记的组织掩膜、TMA解阵列、细胞分割和单细胞特征提取的TMA图像分析;以及用于质量控制、聚类、迭代细胞类型注释和空间分析的AnnData分析。PRISM作为napari中的一个插件集成在一起,提供了一个直观且完全交互式的图形界面,用于实时和人工参与的分析。PRISM支持高效的多分辨率图像处理,并使用高效的可扩展数据结构、并行化和GPU加速来加速生物信息学工作流程。通过结合模块化灵活性、计算效率和完全交互式界面,PRISM简化了从原始多重图像到可操作临床见解的转化,使研究人员能够有效地探索和与空间组学数据进行交互。