Landwehr Grant M, Vogeli Bastian, Tian Cong, Singal Bharti, Gupta Anika, Lion Rebeca, Sargent Edward H, Karim Ashty S, Jewett Michael C
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
bioRxiv. 2024 Aug 8:2024.08.08.607227. doi: 10.1101/2024.08.08.607227.
Biotechnological processes hold tremendous potential for the efficient and sustainable conversion of one-carbon (C1) substrates into complex multi-carbon products. However, the development of robust and versatile biocatalytic systems for this purpose remains a significant challenge. In this study, we report a hybrid electrochemical-biochemical cell-free system for the conversion of C1 substrates into the universal biological building block acetyl-CoA. The synthetic reductive formate pathway (ReForm) consists of five core enzymes catalyzing non-natural reactions that were established through a cell-free enzyme engineering platform. We demonstrate that ReForm works in a plug-and-play manner to accept diverse C1 substrates including CO equivalents. We anticipate that ReForm will facilitate efforts to build and improve synthetic C1 utilization pathways for a formate-based bioeconomy.
生物技术过程在将一碳(C1)底物高效且可持续地转化为复杂的多碳产物方面具有巨大潜力。然而,为此开发强大且通用的生物催化系统仍然是一项重大挑战。在本研究中,我们报道了一种混合电化学 - 生化无细胞系统,用于将C1底物转化为通用的生物构建模块乙酰辅酶A。合成还原甲酸途径(ReForm)由五种核心酶组成,这些酶催化通过无细胞酶工程平台建立的非天然反应。我们证明ReForm以即插即用的方式工作,能够接受包括CO等价物在内的多种C1底物。我们预计ReForm将有助于构建和改进基于甲酸的生物经济的合成C1利用途径。