Suppr超能文献

贝叶斯模型分析类风湿关节炎与危险因素及其相互作用的关联。

A Bayesian Model to Analyze the Association of Rheumatoid Arthritis With Risk Factors and Their Interactions.

机构信息

The Clarkson School, Clarkson University, Potsdam, NY, United States.

Department of Mathematics, Clarkson University, Potsdam, NY, United States.

出版信息

Front Public Health. 2021 Aug 16;9:693830. doi: 10.3389/fpubh.2021.693830. eCollection 2021.

Abstract

Rheumatoid arthritis (RA) is a chronic autoimmune disorder that commonly manifests as destructive joint inflammation but also affects multiple other organ systems. The pathogenesis of RA is complex where a variety of factors including comorbidities, demographic, and socioeconomic variables are known to associate with RA and influence the progress of the disease. In this work, we used a Bayesian logistic regression model to quantitatively assess how these factors influence the risk of RA, individually and through their interactions. Using cross-sectional data from the National Health and Nutrition Examination Survey (NHANES), a set of 11 well-known RA risk factors such as age, gender, ethnicity, body mass index (BMI), and depression were selected to predict RA. We considered up to third-order interactions between the risk factors and implemented factor analysis of mixed data (FAMD) to account for both the continuous and categorical natures of these variables. The model was further optimized over the area under the receiver operating characteristic curve (AUC) using a genetic algorithm (GA) with the optimal predictive model having a smoothed AUC of 0.826 (95% CI: 0.801-0.850) on a validation dataset and 0.805 (95% CI: 0.781-0.829) on a holdout test dataset. Apart from corroborating the influence of individual risk factors on RA, our model identified a strong association of RA with multiple second- and third-order interactions, many of which involve age or BMI as one of the factors. This observation suggests a potential role of risk-factor interactions in RA disease mechanism. Furthermore, our findings on the contribution of RA risk factors and their interactions to disease prediction could be useful in developing strategies for early diagnosis of RA.

摘要

类风湿关节炎(RA)是一种慢性自身免疫性疾病,通常表现为破坏性关节炎症,但也会影响多个其他器官系统。RA 的发病机制很复杂,已知多种因素,包括合并症、人口统计学和社会经济变量,与 RA 相关,并影响疾病的进展。在这项工作中,我们使用贝叶斯逻辑回归模型来定量评估这些因素如何单独以及通过它们的相互作用影响 RA 的风险。使用来自国家健康和营养检查调查(NHANES)的横断面数据,选择了一组 11 种已知的 RA 风险因素,如年龄、性别、种族、体重指数(BMI)和抑郁,以预测 RA。我们考虑了风险因素之间的三阶相互作用,并实施了混合数据的因子分析(FAMD),以考虑这些变量的连续和分类性质。该模型通过遗传算法(GA)在接收者操作特征曲线(AUC)下的面积上进行了进一步优化,最佳预测模型在验证数据集上的平滑 AUC 为 0.826(95%CI:0.801-0.850),在保留测试数据集上的 AUC 为 0.805(95%CI:0.781-0.829)。除了证实单个风险因素对 RA 的影响外,我们的模型还确定了 RA 与多个二阶和三阶相互作用之间的强烈关联,其中许多相互作用涉及年龄或 BMI 作为其中一个因素。这一观察结果表明,风险因素相互作用在 RA 发病机制中可能发挥作用。此外,我们关于 RA 风险因素及其相互作用对疾病预测的贡献的发现,可能有助于制定 RA 的早期诊断策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6ba/8415718/d6410f2e93de/fpubh-09-693830-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验