Suppr超能文献

一种基于纹理的新型标记框架,用于视网膜光学相干断层扫描图像中的高反射灶识别。

A new texture-based labeling framework for hyper-reflective foci identification in retinal optical coherence tomography images.

作者信息

Monemian Maryam, Daneshmand Parisa Ghaderi, Rakhshani Sajed, Rabbani Hossein

机构信息

Medical Image and Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

Sci Rep. 2024 Oct 2;14(1):22933. doi: 10.1038/s41598-024-73927-2.

Abstract

An important abnormality in Optical Coherence Tomography (OCT) images is Hyper-Reflective Foci (HRF). This anomaly can be interpreted as a biomarker of serious retinal diseases such as Age-related Macular Degeneration (AMD) and Diabetic Macular Edema (DME) or the progression of disease from an early stage to a late one. In this paper, a new method is proposed for the identification of HRFs. The new method divides the OCT B-scan into patches and separately verifies each patch to determine whether or not the patch contains an HRF. The procedure of patch verification contains a texture-based framework which assigns appropriate labels according to intensity changes to each column and row. Then, a feature vector is extracted for each patch based on the assigned labels. The feature vectors are utilized in the training step of well-known classifiers like Support Vector Machine (SVM). Then, the classifiers are used to produce the labels for the test OCT images. The new method is evaluated on a public dataset including HRF labels. The experimental results show that the new method is capable of providing outstanding results in terms of speed and accuracy.

摘要

光学相干断层扫描(OCT)图像中的一个重要异常是高反射灶(HRF)。这种异常可被视为诸如年龄相关性黄斑变性(AMD)和糖尿病性黄斑水肿(DME)等严重视网膜疾病的生物标志物,或者是疾病从早期发展到晚期的标志。本文提出了一种识别HRF的新方法。该新方法将OCT B扫描图像划分为多个小块,并分别对每个小块进行验证,以确定该小块是否包含一个HRF。小块验证过程包含一个基于纹理的框架,该框架根据强度变化为每一列和每一行分配适当的标签。然后,基于分配的标签为每个小块提取一个特征向量。这些特征向量用于诸如支持向量机(SVM)等知名分类器的训练步骤。然后,使用分类器为测试OCT图像生成标签。该新方法在一个包含HRF标签的公共数据集上进行了评估。实验结果表明,该新方法在速度和准确性方面都能提供出色的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验