Günther Babett, Marre Sophie, Defois Clémence, Merzi Thomas, Blanc Philippe, Peyret Pierre, Arnaud-Haond Sophie
MARBEC, Universite of Montpellier, CNRS, Ifremer, IRD, Sète, France.
Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France.
Mol Ecol Resour. 2022 Feb;22(2):623-637. doi: 10.1111/1755-0998.13500. Epub 2021 Sep 20.
Biodiversity inventory of marine systems remains limited due to unbalanced access to the three ocean dimensions. The use of environmental DNA (eDNA) for metabarcoding allows fast and effective biodiversity inventory and is forecast as a future biodiversity research and biomonitoring tool. However, in poorly understood ecosystems, eDNA results remain difficult to interpret due to large gaps in reference databases and PCR bias limiting the detection of some major phyla. Here, we aimed to circumvent these limitations by avoiding PCR and recollecting larger DNA fragments to improve assignment of detected taxa through phylogenetic reconstruction. We applied capture by hybridization (CBH) to enrich DNA from deep-sea sediment samples and compared the results with those obtained through an up-to-date metabarcoding PCR-based approach (MTB). Originally developed for bacterial communities and targeting 16S rDNA, the CBH approach was applied to 18S rDNA to improve the detection of species forming benthic communities of eukaryotes, with a particular focus on metazoans. The results confirmed the possibility of extending CBH to metazoans with two major advantages: (i) CBH revealed a broader spectrum of prokaryotic, eukaryotic, and particularly metazoan diversity, and (ii) CBH allowed much more robust phylogenetic reconstructions of full-length barcodes with up to 1900 base pairs. This is particularly important for taxa whose assignment is hampered by gaps in reference databases. This study provides a database and probes to apply 18S CBH to diverse marine systems, confirming this promising new tool to improve biodiversity assessments in data-poor ecosystems such as those in the deep sea.
由于对海洋三维空间的获取不均衡,海洋系统的生物多样性清查仍然有限。利用环境DNA(eDNA)进行宏条形码分析能够实现快速有效的生物多样性清查,并有望成为未来生物多样性研究和生物监测的工具。然而,在了解较少的生态系统中,由于参考数据库存在较大差距以及PCR偏差限制了某些主要门类的检测,eDNA结果仍然难以解释。在此,我们旨在通过避免PCR并收集更大的DNA片段来规避这些限制,以通过系统发育重建改进对检测到的分类单元的归类。我们应用杂交捕获(CBH)技术从深海沉积物样本中富集DNA,并将结果与通过基于PCR的最新宏条形码分析方法(MTB)获得的结果进行比较。CBH方法最初是为细菌群落开发的,靶向16S rDNA,现应用于18S rDNA,以改进对形成真核生物底栖群落的物种的检测,尤其关注后生动物。结果证实了将CBH扩展到后生动物的可能性,具有两个主要优势:(i)CBH揭示了更广泛的原核生物、真核生物,特别是后生动物多样性,(ii)CBH能够对长达1900个碱基对的全长条形码进行更可靠的系统发育重建。这对于那些在参考数据库中存在差距而妨碍其归类的分类单元尤为重要。本研究提供了一个数据库和探针,用于将18S CBH应用于各种海洋系统,证实了这种有前景的新工具可改善数据匮乏的生态系统(如深海生态系统)中的生物多样性评估。