Su Rui, Estrecho Eliezer, Biegańska Dąbrówka, Huang Yuqing, Wurdack Matthias, Pieczarka Maciej, Truscott Andrew G, Liew Timothy C H, Ostrovskaya Elena A, Xiong Qihua
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia.
Sci Adv. 2021 Nov 5;7(45):eabj8905. doi: 10.1126/sciadv.abj8905. Epub 2021 Nov 3.
Topology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space. In non-Hermitian systems, a topological invariant is predicted to emerge from the winding of the complex eigenenergies. Here, we directly measure the non-Hermitian topological invariant arising from exceptional points in the momentum-resolved spectrum of exciton polaritons. These are hybrid light-matter quasiparticles formed by photons strongly coupled to electron-hole pairs (excitons) in a halide perovskite semiconductor at room temperature. We experimentally map out both the real (energy) and imaginary (linewidth) parts of the spectrum near the exceptional points and extract the novel topological invariant—fractional spectral winding. Our work represents an essential step toward realization of non-Hermitian topological phases in a condensed matter system.
拓扑结构对于理解和设计展现出对缺陷免疫的稳健物理现象的材料至关重要。不同的物质拓扑相由拓扑不变量来表征。在能量守恒(厄米)系统中,这些不变量由动量空间中本征态的缠绕决定。在非厄米系统中,预计一个拓扑不变量会从复本征能量的缠绕中出现。在此,我们直接测量了激子极化激元动量分辨谱中由例外点产生的非厄米拓扑不变量。激子极化激元是在室温下由与卤化物钙钛矿半导体中的电子 - 空穴对(激子)强耦合的光子形成的混合光 - 物质准粒子。我们通过实验绘制出例外点附近光谱的实部(能量)和虚部(线宽),并提取出新颖的拓扑不变量——分数光谱缠绕。我们的工作代表了在凝聚态物质系统中实现非厄米拓扑相的关键一步。