University of Salzburg, Austria.
J Cogn Neurosci. 2023 Oct 1;35(10):1521-1537. doi: 10.1162/jocn_a_02040.
Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition. Their remarkable success has helped vision science break new ground, and recent efforts have started to transfer this achievement to research on biological face recognition. In this regard, face detection can be investigated by comparing face-selective biological neurons and brain areas to artificial neurons and model layers. Similarly, face identification can be examined by comparing in vivo and in silico multidimensional "face spaces." In this review, we summarize the first studies that use DCNNs to model biological face recognition. On the basis of a broad spectrum of behavioral and computational evidence, we conclude that DCNNs are useful models that closely resemble the general hierarchical organization of face recognition in the ventral visual pathway and the core face network. In two exemplary spotlights, we emphasize the unique scientific contributions of these models. First, studies on face detection in DCNNs indicate that elementary face selectivity emerges automatically through feedforward processing even in the absence of visual experience. Second, studies on face identification in DCNNs suggest that identity-specific experience and generative mechanisms facilitate this particular challenge. Taken together, as this novel modeling approach enables close control of predisposition (i.e., architecture) and experience (i.e., training data), it may be suited to inform long-standing debates on the substrates of biological face recognition.
深度卷积神经网络(DCNN)已经成为生物目标识别的最先进计算模型。它们的巨大成功帮助视觉科学取得了新的突破,最近的研究已经开始将这一成果应用于生物人脸识别研究。在这方面,可以通过比较选择性生物神经元和大脑区域与人工神经元和模型层来研究面部检测。同样,可以通过比较体内和体外多维“面部空间”来研究面部识别。在这篇综述中,我们总结了使用 DCNN 对生物人脸识别进行建模的首批研究。基于广泛的行为和计算证据,我们得出结论,DCNN 是有用的模型,它们非常类似于腹侧视觉通路和核心面部网络中人脸识别的一般分层组织。在两个典型的聚焦点中,我们强调了这些模型的独特科学贡献。首先,在 DCNN 中的面部检测研究表明,即使在没有视觉经验的情况下,通过前馈处理也会自动出现基本的面部选择性。其次,在 DCNN 中的面部识别研究表明,特定身份的经验和生成机制有助于应对这一特殊挑战。总的来说,由于这种新的建模方法可以密切控制倾向(即架构)和经验(即训练数据),因此它可能适合解决关于生物人脸识别的基础的长期争论。