Suppr超能文献

用深度卷积神经网络对人类自然主义面孔处理进行建模。

Modeling naturalistic face processing in humans with deep convolutional neural networks.

机构信息

Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH 03755.

Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2304085120. doi: 10.1073/pnas.2304085120. Epub 2023 Oct 17.

Abstract

Deep convolutional neural networks (DCNNs) trained for face identification can rival and even exceed human-level performance. The ways in which the internal face representations in DCNNs relate to human cognitive representations and brain activity are not well understood. Nearly all previous studies focused on static face image processing with rapid display times and ignored the processing of naturalistic, dynamic information. To address this gap, we developed the largest naturalistic dynamic face stimulus set in human neuroimaging research (700+ naturalistic video clips of unfamiliar faces). We used this naturalistic dataset to compare representational geometries estimated from DCNNs, behavioral responses, and brain responses. We found that DCNN representational geometries were consistent across architectures, cognitive representational geometries were consistent across raters in a behavioral arrangement task, and neural representational geometries in face areas were consistent across brains. Representational geometries in late, fully connected DCNN layers, which are optimized for individuation, were much more weakly correlated with cognitive and neural geometries than were geometries in late-intermediate layers. The late-intermediate face-DCNN layers successfully matched cognitive representational geometries, as measured with a behavioral arrangement task that primarily reflected categorical attributes, and correlated with neural representational geometries in known face-selective topographies. Our study suggests that current DCNNs successfully capture neural cognitive processes for categorical attributes of faces but less accurately capture individuation and dynamic features.

摘要

深度卷积神经网络(DCNN)经过人脸识别训练后,可以与人类的表现相媲美,甚至超越人类。目前,我们对于 DCNN 内部的人脸表示与人类认知表现和大脑活动之间的关系还不甚了解。几乎所有的既往研究都集中在处理快速显示的静态人脸图像,而忽略了对自然、动态信息的处理。为了解决这一差距,我们开发了人类神经影像学研究中最大的自然动态人脸刺激数据集(700 多个陌生面孔的自然视频剪辑)。我们使用这个自然数据集来比较从 DCNN 中估计的表示几何形状、行为反应和大脑反应。我们发现,DCNN 的表示几何形状在不同架构之间是一致的,行为任务中的认知表示几何形状在不同评分者之间是一致的,而面部区域的神经表示几何形状在不同大脑之间是一致的。在晚期,完全连接的 DCNN 层中的表示几何形状,这些层是为个体化而优化的,与认知和神经几何形状的相关性比晚期中间层的几何形状弱得多。晚期中间层的人脸-DCNN 层成功地匹配了认知表示几何形状,这可以通过主要反映类别属性的行为排列任务来衡量,并且与已知的面部选择拓扑中的神经表示几何形状相关。我们的研究表明,目前的 DCNN 成功地捕获了人脸类别属性的神经认知过程,但对个体化和动态特征的捕获不够准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7fc/10614847/88fad0a80d73/pnas.2304085120fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验