Zhang Qiang, Zhang Sheng, Li Jianxin, Pan Yi, Zhao Jing, Feng Yixing, Zhao Yanhui, Wang Xiaoqing, Zheng Zhiming, Yang Xiangming, Liu Lixia, Qin Chunxin, Zhao Ke, Liu Xiaonan, Li Caixia, Zhang Liuyang, Yang Chunrui, Zhuo Na, Zhang Hong, Liu Jie, Gao Jinglei, Di Xiaoling, Meng Fanbo, Ji Wei, Yang Meng, Xin Xiaojie, Wei Xi, Jin Rui, Zhang Lun, Wang Xudong, Song Fengju, Zheng Xiangqian, Gao Ming, Chen Kexin, Li Xiangchun
Department of Maxillofacial and Otorhinolaryngology Oncology, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China.
Department of Diagnostic and Therapeutic Ultrasonography, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300060, China.
Cancer Biol Med. 2021 Sep 7;19(5):733-41. doi: 10.20892/j.issn.2095-3941.2020.0509.
Large volume radiological text data have been accumulated since the incorporation of electronic health record (EHR) systems in clinical practice. We aimed to determine whether deep natural language processing algorithms could aid radiologists in improving thyroid cancer diagnosis.
Sonographic EHR data were obtained from the EHR database. Pathological reports were used as the gold standard for diagnosing thyroid cancer. We developed thyroid cancer diagnosis based on natural language processing (THCaDxNLP) to interpret unstructured sonographic text reports for thyroid cancer diagnosis. We used the area under the receiver operating characteristic curve (AUROC) as the primary metric to measure the performance of the THCaDxNLP. We compared the performance of thyroid ultrasound radiologists aided with THCaDxNLP those without THCaDxNLP using 5 independent test sets.
We obtained a total number of 788,129 sonographic radiological reports. The number of thyroid sonographic data points was 132,277, 18,400 of which were thyroid cancer patients. Among the 5 test sets, the numbers of patients per set were 439, 186, 82, 343, and 171. THCaDxNLP achieved high performance in identifying thyroid cancer patients (the AUROC ranged from 0.857-0.932). Thyroid ultrasound radiologists aided with THCaDxNLP achieved significantly higher performances than those without THCaDxNLP in terms of accuracy (93.8% 87.2%; one-sided -test, adjusted = 0.003), precision (92.5% 86.0%; = 0.018), and F1 metric (94.2% 86.4%; = 0.007).
THCaDxNLP achieved a high AUROC for the identification of thyroid cancer, and improved the accuracy, sensitivity, and precision of thyroid ultrasound radiologists. This warrants further investigation of THCaDxNLP in prospective clinical trials.
自电子健康记录(EHR)系统应用于临床实践以来,已积累了大量放射学文本数据。我们旨在确定深度自然语言处理算法是否有助于放射科医生改善甲状腺癌诊断。
从EHR数据库获取超声EHR数据。病理报告用作诊断甲状腺癌的金标准。我们开发了基于自然语言处理的甲状腺癌诊断方法(THCaDxNLP),用于解读甲状腺癌诊断的非结构化超声文本报告。我们使用受试者操作特征曲线下面积(AUROC)作为主要指标来衡量THCaDxNLP的性能。我们使用5个独立测试集比较了使用THCaDxNLP辅助的甲状腺超声放射科医生与未使用THCaDxNLP的放射科医生的表现。
我们共获得788,129份超声放射学报告。甲状腺超声数据点的数量为132,277个,其中18,400个是甲状腺癌患者。在5个测试集中,每个测试集的患者数量分别为439、186、82、343和171。THCaDxNLP在识别甲状腺癌患者方面表现出色(AUROC范围为0.857 - 0.932)。在准确性(93.8%对87.2%;单侧检验,校正P = 0.003)、精确性(92.5%对86.0%;P = 0.018)和F1指标(94.2%对86.4%;P = 0.007)方面,使用THCaDxNLP辅助的甲状腺超声放射科医生的表现明显优于未使用THCaDxNLP的医生。
THCaDxNLP在识别甲状腺癌方面实现了较高的AUROC,并提高了甲状腺超声放射科医生的准确性、敏感性和精确性。这值得在前瞻性临床试验中对THCaDxNLP进行进一步研究。