基于网络的疾病调控与进展建模方法。
Network-based approaches for modeling disease regulation and progression.
作者信息
Galindez Gihanna, Sadegh Sepideh, Baumbach Jan, Kacprowski Tim, List Markus
机构信息
Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany.
Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany.
出版信息
Comput Struct Biotechnol J. 2022 Dec 16;21:780-795. doi: 10.1016/j.csbj.2022.12.022. eCollection 2023.
Molecular interaction networks lay the foundation for studying how biological functions are controlled by the complex interplay of genes and proteins. Investigating perturbed processes using biological networks has been instrumental in uncovering mechanisms that underlie complex disease phenotypes. Rapid advances in omics technologies have prompted the generation of high-throughput datasets, enabling large-scale, network-based analyses. Consequently, various modeling techniques, including network enrichment, differential network extraction, and network inference, have proven to be useful for gaining new mechanistic insights. We provide an overview of recent network-based methods and their core ideas to facilitate the discovery of disease modules or candidate mechanisms. Knowledge generated from these computational efforts will benefit biomedical research, especially drug development and precision medicine. We further discuss current challenges and provide perspectives in the field, highlighting the need for more integrative and dynamic network approaches to model disease development and progression.
分子相互作用网络为研究生物功能如何由基因和蛋白质的复杂相互作用所控制奠定了基础。利用生物网络研究受干扰的过程有助于揭示复杂疾病表型背后的机制。组学技术的快速发展促使了高通量数据集的产生,从而能够进行大规模的基于网络的分析。因此,包括网络富集、差异网络提取和网络推断在内的各种建模技术已被证明有助于获得新的机制性见解。我们概述了近期基于网络的方法及其核心思想,以促进疾病模块或候选机制的发现。这些计算工作所产生的知识将有益于生物医学研究,尤其是药物开发和精准医学。我们进一步讨论了当前的挑战并提供了该领域的观点,强调需要更多综合和动态的网络方法来模拟疾病的发展和进程。