Suppr超能文献

基于 Johnson 累积密度函数拟合的一种用于描述任何国家 COVID-19 轨迹和动态的简单方法。

A simple method to describe the COVID-19 trajectory and dynamics in any country based on Johnson cumulative density function fitting.

机构信息

Institute of Nature Conservation, Polish Academy of Sciences, al. A. Mickiewicza 33, 31-120, Kraków, Poland.

Faculty of Applied Mathematics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059, Kraków, Poland.

出版信息

Sci Rep. 2021 Sep 7;11(1):17744. doi: 10.1038/s41598-021-97285-5.

Abstract

A simple method is utilised to study and compare COVID-19 infection dynamics between countries based on curve fitting to publicly shared data of confirmed COVID-19 infections. The method was tested using data from 80 countries from 6 continents. We found that Johnson cumulative density functions (CDFs) were extremely well fitted to the data (R > 0.99) and that Johnson CDFs were much better fitted to the tails of the data than either the commonly used normal or lognormal CDFs. Fitted Johnson CDFs can be used to obtain basic parameters of the infection wave, such as the percentage of the population infected during an infection wave, the days of the start, peak and end of the infection wave, and the duration of the wave's increase and decrease. These parameters can be easily interpreted biologically and used both for describing infection wave dynamics and in further statistical analysis. The usefulness of the parameters obtained was analysed with respect to the relation between the gross domestic product (GDP) per capita, the population density, the percentage of the population infected during an infection wave, the starting day and the duration of the infection wave in the 80 countries. We found that all the above parameters were significantly associated with GDP per capita, but only the percentage of the population infected was significantly associated with population density. If used with caution, this method has a limited ability to predict the future trajectory and parameters of an ongoing infection wave.

摘要

利用一种简单的方法,根据对已公开的确诊 COVID-19 感染数据进行曲线拟合,研究和比较各国的 COVID-19 感染动态。该方法使用来自六大洲 80 个国家的数据进行了测试。我们发现,约翰逊累积分布函数(CDF)非常适合于数据拟合(R > 0.99),并且约翰逊 CDF 对数据尾部的拟合效果要好于常用的正态或对数正态 CDF。拟合的约翰逊 CDF 可用于获取感染波的基本参数,例如在感染波期间感染人口的百分比、感染波的起始、峰值和结束日期以及波的增加和减少持续时间。这些参数在生物学上易于解释,可用于描述感染波动态和进一步的统计分析。我们分析了使用 80 个国家的人均国内生产总值(GDP)、人口密度、感染波期间感染人口的百分比、起始日期和感染波持续时间等参数的有效性。我们发现,所有上述参数都与人均 GDP 显著相关,但只有感染人口的百分比与人口密度显著相关。如果谨慎使用,该方法对预测正在进行的感染波的未来轨迹和参数具有有限的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f075/8423734/39847e17757e/41598_2021_97285_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验