Suppr超能文献

使用线性判别分析自适应技术提升基于面部肌电图的面部表情识别在社交虚拟现实应用中的性能。

Performance enhancement of facial electromyogram-based facial-expression recognition for social virtual reality applications using linear discriminant analysis adaptation.

作者信息

Cha Ho-Seung, Im Chang-Hwan

机构信息

Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 133-791 South Korea.

出版信息

Virtual Real. 2022;26(1):385-398. doi: 10.1007/s10055-021-00575-6. Epub 2021 Sep 3.

Abstract

Recent studies have indicated that facial electromyogram (fEMG)-based facial-expression recognition (FER) systems are promising alternatives to the conventional camera-based FER systems for virtual reality (VR) environments because they are economical, do not depend on the ambient lighting, and can be readily incorporated into existing VR headsets. In our previous study, we applied a Riemannian manifold-based feature extraction approach to fEMG signals recorded around the eyes and demonstrated that 11 facial expressions could be classified with a high accuracy of 85.01%, with only a single training session. However, the performance of the conventional fEMG-based FER system was not high enough to be applied in practical scenarios. In this study, we developed a new method for improving the FER performance by employing linear discriminant analysis (LDA) adaptation with labeled datasets of other users. Our results indicated that the mean classification accuracy could be increased to 89.40% by using the LDA adaptation method ( < .001, Wilcoxon signed-rank test). Additionally, we demonstrated the potential of a user-independent FER system that could classify 11 facial expressions with a classification accuracy of 82.02% without any training sessions. To the best of our knowledge, this was the first study in which the LDA adaptation approach was employed in a cross-subject manner. It is expected that the proposed LDA adaptation approach would be used as an important method to increase the usability of fEMG-based FER systems for social VR applications.

摘要

最近的研究表明,基于面部肌电图(fEMG)的面部表情识别(FER)系统是虚拟现实(VR)环境中传统基于摄像头的FER系统的有前途的替代方案,因为它们经济实惠,不依赖环境光,并且可以很容易地集成到现有的VR头显中。在我们之前的研究中,我们将基于黎曼流形的特征提取方法应用于眼睛周围记录的fEMG信号,并证明仅通过一次训练就能以85.01%的高精度对11种面部表情进行分类。然而,传统的基于fEMG的FER系统的性能还不够高,无法应用于实际场景。在本研究中,我们开发了一种新方法,通过对其他用户的标记数据集采用线性判别分析(LDA)自适应来提高FER性能。我们的结果表明,使用LDA自适应方法,平均分类准确率可提高到89.40%(<0.001,Wilcoxon符号秩检验)。此外,我们展示了一种独立于用户的FER系统的潜力,该系统无需任何训练就能以82.02%的分类准确率对11种面部表情进行分类。据我们所知,这是第一项以跨主体方式采用LDA自适应方法的研究。预计所提出的LDA自适应方法将作为一种重要方法,用于提高基于fEMG的FER系统在社交VR应用中的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a232/8414465/db4282371a42/10055_2021_575_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验