Raza Ali, Rehman Amjad, Sehar Rukhshanda, Alamri Faten S, Alotaibi Sarah, Al Ghofaily Bayan, Saba Tanzila
Department of Software Engineering, University of Lahore, Lahore, Pakistan.
Artificial Intelligence & Data Analytics Lab CCIS, Prince Sultan University, Riyadh, Saudi Arabia.
PeerJ Comput Sci. 2024 Jul 19;10:e2150. doi: 10.7717/peerj-cs.2150. eCollection 2024.
Virtual reality (VR) and immersive technology have emerged as powerful tools with numerous applications. VR technology creates a computer-generated simulation that immerses users in a virtual environment, providing a highly realistic and interactive experience. This technology finds applications in various fields, including gaming, healthcare, education, architecture, and training simulations. Understanding user immersion levels in VR is crucial and challenging for optimizing the design of VR applications. Immersion refers to the extent to which users feel absorbed and engrossed in the virtual environment. This research primarily aims to detect user immersion levels in VR using an efficient machine-learning model. We utilized a benchmark dataset based on user experiences in VR environments to conduct our experiments. Advanced deep and machine learning approaches are applied in comparison. We proposed a novel technique called Polynomial Random Forest (PRF) for feature generation mechanisms. The proposed PRF approach extracts polynomial and class prediction probability features to generate a new feature set. Extensive research experiments show that random forest outperformed state-of-the-art approaches, achieving a high immersion level detection rate of 98%, using the proposed PRF technique. We applied hyperparameter optimization and cross-validation approaches to validate the performance scores. Additionally, we utilized explainable artificial intelligence (XAI) to interpret the reasoning behind the decisions made by the proposed model for user immersion level detection in VR. Our research has the potential to revolutionize user immersion level detection in VR, enhancing the design process.
虚拟现实(VR)和沉浸式技术已成为具有众多应用的强大工具。VR技术创建了一个计算机生成的模拟环境,将用户沉浸其中,提供高度逼真和交互式的体验。该技术在游戏、医疗保健、教育、建筑和训练模拟等各个领域都有应用。了解VR中用户的沉浸程度对于优化VR应用的设计至关重要且具有挑战性。沉浸是指用户在虚拟环境中被吸引和全神贯注的程度。本研究主要旨在使用高效的机器学习模型检测VR中的用户沉浸程度。我们利用基于VR环境中用户体验的基准数据集进行实验。相比之下,应用了先进的深度学习和机器学习方法。我们提出了一种名为多项式随机森林(PRF)的新颖技术用于特征生成机制。所提出的PRF方法提取多项式和类预测概率特征以生成新的特征集。大量的研究实验表明,使用所提出的PRF技术,随机森林的表现优于现有方法,实现了98%的高沉浸程度检测率。我们应用超参数优化和交叉验证方法来验证性能得分。此外,我们利用可解释人工智能(XAI)来解释所提出的用于VR中用户沉浸程度检测模型做出决策背后的推理。我们的研究有可能彻底改变VR中用户沉浸程度的检测,增强设计过程。