Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, 723 W. Michigan St. SL220K, Indianapolis, IN 46202, United States of America.
Biofabrication. 2021 Sep 21;13(4). doi: 10.1088/1758-5090/ac24dc.
Three-dimensional (3D) bioprinting has emerged as an important tool to fabricate scaffolds with complex structures for tissue engineering and regenerative medicine applications. For extrusion-based 3D bioprinting, the success of printing complex structures relies largely on the properties of bioink. Methylcellulose (MC) has been exploited as a potential bioink for 3D bioprinting due to its temperature-dependent rheological properties. However, MC is highly soluble and has low structural stability at room temperature, making it suboptimal for 3D bioprinting applications. In this study, we report a one-step synthesis protocol for modifying MC with norbornene (MCNB), which serves as a new bioink for 3D bioprinting. MCNB preserves the temperature-dependent reversible sol-gel transition and readily reacts with thiol-bearing linkers through light-mediated step-growth thiol-norbornene photopolymerization. Furthermore, we rendered the otherwise inert MC network bioactive through facile conjugation of integrin-binding ligands (e.g. CRGDS) or via incorporating cell-adhesive and protease-sensitive gelatin-based macromer (e.g. GelNB). The adaptability of the new MCNB-based bioink offers an attractive option for diverse 3D bioprinting applications.
三维(3D)生物打印已成为制造用于组织工程和再生医学应用的具有复杂结构支架的重要工具。对于基于挤出的 3D 生物打印,打印复杂结构的成功在很大程度上依赖于生物墨水的特性。由于其温度依赖性流变特性,甲基纤维素(MC)已被用作 3D 生物打印的潜在生物墨水。然而,MC 在室温下高度可溶且结构稳定性低,使其不适用于 3D 生物打印应用。在这项研究中,我们报告了用降冰片烯(MCNB)一步修饰 MC 的合成方案,MCNB 作为一种新的 3D 生物打印生物墨水。MCNB 保留了温度依赖性的可逆溶胶-凝胶转变,并通过光介导的逐步增长硫醇-降冰片烯光聚合容易与含硫醇的接头反应。此外,我们通过简便地缀合整合素结合配体(例如 CRGDS)或通过掺入细胞粘附和蛋白酶敏感的明胶基大分子单体(例如 GelNB)使原本惰性的 MC 网络具有生物活性。新型 MCNB 基生物墨水的适应性为各种 3D 生物打印应用提供了有吸引力的选择。