Suppr超能文献

建模放松封锁措施对英格兰累计 COVID-19 病例和死亡人数的影响。

Modelling the impact of lockdown-easing measures on cumulative COVID-19 cases and deaths in England.

机构信息

Dept. of Psychiatry, University of Cambridge, Cambridge, UK.

Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

出版信息

BMJ Open. 2021 Sep 8;11(9):e042483. doi: 10.1136/bmjopen-2020-042483.

Abstract

OBJECTIVES

To assess the potential impacts of successive lockdown-easing measures in England, at a point in the COVID-19 pandemic when community transmission levels were relatively high.

DESIGN

We developed a Bayesian model to infer incident cases and reproduction number () in England, from incident death data. We then used this to forecast excess cases and deaths in multiple plausible scenarios in which increases at one or more time points.

SETTING

England.

PARTICIPANTS

Publicly available national incident death data for COVID-19 were examined.

PRIMARY OUTCOME

Excess cumulative cases and deaths forecast at 90 days, in simulated scenarios of plausible increases in after successive easing of lockdown in England, compared with a baseline scenario where remained constant.

RESULTS

Our model inferred an of 0.75 on 13 May when England first started easing lockdown. In the most conservative scenario modelled where increased to 0.80 as lockdown was eased further on 1 June and then remained constant, the model predicted an excess 257 (95% CI 108 to 492) deaths and 26 447 (95% CI 11 105 to 50 549) cumulative cases over 90 days. In the scenario with maximal increases in (but staying ≤1), the model predicts 3174 (95% CI 1334 to 6060) excess cumulative deaths and 421 310 (95% CI 177 012 to 804 811) cases. Observed data from the forecasting period aligned most closely to the scenario in which increased to 0.85 on 1 June, and 0.9 on 4 July.

CONCLUSIONS

When levels of transmission are high, even small changes in with easing of lockdown can have significant impacts on expected cases and deaths, even if remains ≤1. This will have a major impact on population health, tracing systems and healthcare services in England. Following an elimination strategy rather than one of maintenance of ≤1 would substantially mitigate the impact of the COVID-19 epidemic within England.

摘要

目的

在 COVID-19 大流行期间社区传播水平相对较高的情况下,评估英国连续放宽封锁措施的潜在影响。

设计

我们开发了一种贝叶斯模型,从发病死亡数据中推断出英国的发病病例和繁殖数()。然后,我们使用该模型预测在一个或多个时间点增加时,多种可能情况下的超额病例和死亡人数。

设置

英国。

参与者

检查了公开的英国 COVID-19 发病死亡的全国性数据。

主要结果

在英国连续放宽封锁后,假设繁殖数()在某个时间点增加的情况下,模拟情景下 90 天内的超额累计病例和死亡人数,与繁殖数()保持不变的基线情景相比。

结果

我们的模型推断,5 月 13 日英国首次开始放宽封锁时的繁殖数()为 0.75。在模型中最保守的情况下,假设 6 月 1 日进一步放宽封锁时增加到 0.80,然后保持不变,模型预测 90 天内将额外死亡 257 人(95%CI 108 至 492)和累计病例 26447 例(95%CI 11051 至 50549)。在繁殖数()最大增加(但仍≤1)的情况下,模型预测将有 3174 人(95%CI 1334 至 6060)超额累计死亡,421310 例(95%CI 177012 至 804811)病例。预测期间的观测数据与 6 月 1 日繁殖数()增加到 0.85 和 7 月 4 日繁殖数()增加到 0.9 的情景最为吻合。

结论

当传播水平较高时,即使在封锁放宽时繁殖数()略有增加,也会对预期病例和死亡人数产生重大影响,即使繁殖数()仍≤1。这将对英国的人口健康、追踪系统和医疗服务产生重大影响。采取消除策略而不是维持繁殖数()≤1 的策略,将大大减轻 COVID-19 疫情在英国的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00f5/8438582/5c6a2c39fdb1/bmjopen-2020-042483f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验