Huang Bingji, Yao Dachuan, Yuan Jingjing, Tao Yingrui, Yin Yixuan, He Guangyu, Chen Haiqun
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):1652-1661. doi: 10.1016/j.jcis.2021.08.140. Epub 2021 Aug 25.
It is a great challenge to design electrode materials with good stability and high specific capacitance for supercapacitors. Herein, a three-dimensional (3D) hydrangea-like NiMoO micro-architecture with Ag nanoparticles anchored on the surface has been designed by adding EDTA-2Na, which was assembled with reduced graphene oxide (rGO) and named as NiMoO-Ag/rGO composite. Benefiting from the synergetic contributions of structural and componential properties, NiMoO-Ag/rGO composite exhibits a high specific capacitance of 566.4 C g at 1 A g, and great cycling performance with 90.5% capacitance retention after 1000 cycles at 10 A g. The NiMoO-Ag/rGO electrode shows an enhanced cycling stability due to the two-dimensional towards two-dimensional (2D-2D) interface coupling between rGO and NiMoO nanosheets, and the stable 3D hydrangea-like micro-architecture. Moreover, NiMoO-Ag/rGO with 5-15 nm pore structure and enhanced conductivity exhibits improved charge transfer and ions diffusion. Besides, NiMoO-Ag/rGO//AC capacitor displays an outstanding energy density of 40.98 Wh kg at 800 kW kg, and an excellent cycling performance with 73.3% capacitance retention at 10 A g after 8000 cycles. The synthesis of NiMoO-Ag/rGO composite can provide an effective strategy to solve the poor electrochemical stability and slow electron/ion transfer of NiMoO material as supercapacitors electrode.
设计具有良好稳定性和高比电容的超级电容器电极材料是一项巨大的挑战。在此,通过添加乙二胺四乙酸二钠(EDTA-2Na)设计了一种表面锚定有银纳米颗粒的三维(3D)绣球花状NiMoO微结构,其与还原氧化石墨烯(rGO)组装在一起,命名为NiMoO-Ag/rGO复合材料。得益于结构和成分特性的协同作用,NiMoO-Ag/rGO复合材料在1 A g时表现出566.4 C g的高比电容,并且在10 A g下1000次循环后具有90.5%的电容保持率,循环性能优异。NiMoO-Ag/rGO电极由于rGO与NiMoO纳米片之间的二维到二维(2D-2D)界面耦合以及稳定的3D绣球花状微结构而表现出增强的循环稳定性。此外,具有5-15 nm孔结构和增强导电性的NiMoO-Ag/rGO表现出改善的电荷转移和离子扩散。此外,NiMoO-Ag/rGO//AC电容器在800 kW kg时表现出40.98 Wh kg的出色能量密度,并且在10 A g下8000次循环后具有73.3%的电容保持率,循环性能优异。NiMoO-Ag/rGO复合材料的合成可以提供一种有效的策略来解决NiMoO材料作为超级电容器电极时电化学稳定性差和电子/离子转移缓慢的问题。