Gambardella Alessandro, Marchiori Gregorio, Maglio Melania, Russo Alessandro, Rossi Chiara, Visani Andrea, Fini Milena
Struttura Complessa Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
Materials (Basel). 2021 Aug 24;14(17):4803. doi: 10.3390/ma14174803.
Many biomaterials' surfaces exhibit directional properties, i.e., possess spatial anisotropy on a range of spatial scales spanning from the domain of the naked eye to the sub-micrometer level. Spatial anisotropy of surface can influence the mechanical, physicochemical, and morphological characteristics of the biomaterial, thus affecting its functional behavior in relation, for example, to the host tissue response in regenerative processes, or to the efficacy of spatially organized surface patterns in avoiding bacterial attachment. Despite the importance of the availability of quantitative data, a comprehensive characterization of anisotropic topographies is generally a hard task due to the proliferation of parameters and inherent formal complications. This fact has led so far to excessive simplification that has often prevented researchers from having comparable results. In an attempt to overcome these issues, in this work a systematic and multiscale approach to spatial anisotropy is adopted, based on the determination of only two statistical parameters of surface, namely the texture aspect ratio and the roughness exponent , extracted from atomic force microscopy images of the surface. The validity on this approach is tested on four commercially available implant materials, namely titanium alloy, polyethylene, polyetheretherketone and polyurethane, characterized by textured surfaces obtained after different machining. It is found that the "two parameters" approach is effective in describing the anisotropy changes on surfaces with complex morphology, providing a simple quantitative route for characterization and design of natural and artificial textured surfaces at spatial scales relevant to a wide range of bio-oriented applications.
许多生物材料的表面呈现出方向性特性,即在从肉眼可见范围到亚微米级的一系列空间尺度上具有空间各向异性。表面的空间各向异性会影响生物材料的机械、物理化学和形态特征,从而影响其功能行为,例如在再生过程中与宿主组织反应的关系,或者在避免细菌附着方面空间有序表面图案的功效。尽管定量数据的可用性很重要,但由于参数众多且存在固有的形式复杂性,对各向异性形貌进行全面表征通常是一项艰巨的任务。到目前为止,这一事实导致了过度简化,常常使研究人员无法获得可比的结果。为了克服这些问题,在这项工作中,采用了一种系统的多尺度空间各向异性方法,该方法基于仅从表面的原子力显微镜图像中提取的两个表面统计参数,即纹理长宽比和粗糙度指数。在四种市售植入材料上测试了这种方法的有效性,这四种材料分别是钛合金、聚乙烯、聚醚醚酮和聚氨酯,它们的特点是经过不同加工后具有纹理表面。结果发现,“双参数”方法有效地描述了具有复杂形态的表面上的各向异性变化,为在与广泛的生物导向应用相关的空间尺度上表征和设计天然和人工纹理表面提供了一种简单的定量途径。