Marycz Krzysztof, Turlej Eliza, Kornicka-Garbowska Katarzyna, Zachanowicz Emilia, Tomaszewska Anna, Kulpa-Greszta Magdalena, Pązik Robert
Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, ul. CK. Norwida 27B, 50-375 Wrocław, Poland.
International Institute of Translational Medicine (MIMT), ul. Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland.
Materials (Basel). 2021 Sep 2;14(17):5010. doi: 10.3390/ma14175010.
The prevalence of osteoporosis in recent years is rapidly increasing. For this reason, there is an urgent need to develop bone substitutes and composites able to enhance the regeneration of damaged tissues which meet the patients' needs. In the case of osteoporosis, personalized, tailored materials should enhance the impaired healing process and restore the balance between osteoblast and osteoclast activity. In this study, we fabricated a novel hybrid material (CoMn.FeO@PMMA) and investigated its properties and potential utility in the treatment of osteoporosis. The material structure was investigated with X-ray diffraction, Fourier-transform infrared spectroscopy with attenuated total reflectance, FTIR-ATR, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and selected area (electron) diffraction (SAED). Then, the biological properties of the material were investigated with pre-osteoblast (MC3T3-E1) and pre-osteoclasts (4B12) and in the presence or absence of magnetic field, using RT-qPCR and RT-PCR. During the studies, we established that the impact of the new hybrids on the pre-osteoblasts and pre-osteoclasts could be modified by the presence of the magnetic field, which could influence on the PMMA covered by magnetic nanoparticles impact on the expression of genes related to the apoptosis, cells differentiation, adhesion, microRNAs or regulating the inflammatory processes in both murine cell lines. In summary, the CoMn.FeO@PMMA hybrid may represent a novel approach for material optimization and may be a way forward in the fabrication of scaffolds with enhanced bioactivity that benefits osteoporotic patients.
近年来,骨质疏松症的患病率正在迅速上升。因此,迫切需要开发能够促进受损组织再生且满足患者需求的骨替代物和复合材料。对于骨质疏松症而言,个性化定制材料应能增强受损的愈合过程,并恢复成骨细胞和破骨细胞活性之间的平衡。在本研究中,我们制备了一种新型杂化材料(CoMn.FeO@PMMA),并研究了其性能以及在骨质疏松症治疗中的潜在用途。通过X射线衍射、衰减全反射傅里叶变换红外光谱(FTIR-ATR)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和选区(电子)衍射(SAED)对材料结构进行了研究。然后,使用RT-qPCR和RT-PCR,在有或没有磁场的情况下,用前成骨细胞(MC3T3-E1)和前破骨细胞(4B12)研究了该材料的生物学特性。在研究过程中,我们发现磁场的存在可以改变新型杂化材料对前成骨细胞和前破骨细胞的影响,这可能会影响被磁性纳米颗粒覆盖的PMMA对与细胞凋亡、分化、粘附、微小RNA相关基因表达的影响,或调节两种小鼠细胞系中的炎症过程。总之,CoMn.FeO@PMMA杂化材料可能代表了一种材料优化的新方法,并且可能是制造具有增强生物活性的支架以造福骨质疏松症患者的一条途径。