Suppr超能文献

Mg-8.7Gd-4.18Y-0.42Zr镁合金热变形过程中的本构模型及再结晶机制

Constitutive Model and Recrystallization Mechanism of Mg-8.7Gd-4.18Y-0.42Zr Magnesium Alloy during Hot Deformation.

作者信息

Zhang Ling, Wu Xiaoyu, Zhang Xiaofeng, Yang Xindong, Li Yinglong

机构信息

School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.

School of Mechanical and Engineering, Ningxia Institute of Technology, Shizuishan 753000, China.

出版信息

Materials (Basel). 2022 May 31;15(11):3914. doi: 10.3390/ma15113914.

Abstract

The hot deformation behavior of Mg-8.7Gd-4.18Y-0.42Zr alloy was investigated by uniaxial hot compression tests at 300-475 °C with strain rates of 0.002-10 s. The average activation energy was calculated as 227.67 KJ/mol and a constitutive relation based on the Arrhenius equation was established in this study. The results show that Mg-8.7Gd-4.18Y-0.42Zr magnesium alloy is a strain rate and temperature-sensitive material. When the temperature is constant, the flow stress increases with the increase of strain rate, while when the strain rate is stable, the flow stress decreases with the increase of temperature. DRX is the main softening mechanism of the alloy, including continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX). Meanwhile, the DRX grains nucleate preferentially at the twin intersections in the parent grains under the deformation condition below 300 °C and gradually expand outward with the increase of strain. When the compression temperature is above 400 °C, DRX grains nucleate preferentially at the original grain boundary and then gradually expand inward with the increase of strain. The optimum deformation conditions of the studied alloy are performed at 400-450 °C and 0.002-0.02 s by a comprehensive comparison of the hot processing map, microstructure refinement, and formability.

摘要

通过在300 - 475°C下单轴热压缩试验,应变速率为0.002 - 10 s⁻¹,研究了Mg-8.7Gd-4.18Y-0.42Zr合金的热变形行为。计算得到平均激活能为227.67 KJ/mol,并基于阿伦尼乌斯方程建立了本构关系。结果表明,Mg-8.7Gd-4.18Y-0.42Zr镁合金是一种应变速率和温度敏感材料。当温度恒定时,流变应力随应变速率的增加而增加,而当应变速率稳定时,流变应力随温度的升高而降低。动态再结晶(DRX)是该合金的主要软化机制,包括连续动态再结晶(CDRX)和不连续动态再结晶(DDRX)。同时,在300°C以下的变形条件下,DRX晶粒优先在母晶粒的孪晶界处形核,并随着应变的增加逐渐向外扩展。当压缩温度高于400°C时,DRX晶粒优先在原始晶界处形核,然后随着应变的增加逐渐向内扩展。通过对热加工图、微观组织细化和成形性的综合比较,确定了所研究合金的最佳变形条件为400 - 450°C和0.002 - 0.02 s⁻¹。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验