Suppr超能文献

利用行政数据进行非小细胞肺癌和小细胞肺癌的发病率和患病率分析。

Incidence and Prevalence Analysis of Non-Small-Cell and Small-Cell Lung Cancer Using Administrative Data.

机构信息

Department of Public Health and Pediatric Sciences, University of Torino, 10100 Torino, Italy.

Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35121 Padova, Italy.

出版信息

Int J Environ Res Public Health. 2021 Aug 28;18(17):9076. doi: 10.3390/ijerph18179076.

Abstract

Treatment of lung cancer depends on the stage of the tumor and the histological type. In recent years, the histological confirmation of lung non-small-cell lung cancer has become crucial since the availability of selective target therapeutic approaches. The aim of the study was to develop a validated procedure to estimate the incidence and prevalence of non-small-cell and small-cell lung cancer from healthcare administrative data. A latent class model for categorical variables was applied. The following observed variables were included in the analysis: ICD-9-CM codes in the Hospital Discharge Registry, ATC codes of medications dispensed present in the Drugs Prescriptions Registry, and the procedure codes in the Outpatient Registry. The proportion of non-small-cell lung cancer diagnoses was estimated to be 85% of the total number of lung cancer on the cohort of incident cases and 89% on the cohort of prevalent cases. External validation on a cohort of 107 patients with a lung cancer diagnosis and histological confirmation showed a sensitivity of 95.6% (95%CI: 89-98.8%) and specificity of 94.1% (95%CI: 71.3-99.9%). The procedure is an easy-to-use tool to design subpopulation-based studies on lung cancer and to better plan resource allocation, which is important since the introduction of new targeted therapies in non-small-cell lung carcinoma.

摘要

肺癌的治疗取决于肿瘤的分期和组织学类型。近年来,由于选择性靶向治疗方法的出现,对肺非小细胞肺癌进行组织学确证变得至关重要。本研究旨在开发一种经过验证的程序,以便从医疗保健管理数据中估计非小细胞肺癌和小细胞肺癌的发病率和患病率。应用了用于分类变量的潜在类别模型。在分析中包括以下观察变量:住院出院登记处的 ICD-9-CM 代码、药品处方登记处中存在的药物 ATC 代码以及门诊登记处的程序代码。在新发病例队列中,非小细胞肺癌诊断占肺癌总数的 85%,在现患病例队列中占 89%。对一组 107 例经组织学证实的肺癌诊断患者进行外部验证,结果显示该方法的敏感性为 95.6%(95%CI:89-98.8%),特异性为 94.1%(95%CI:71.3-99.9%)。该程序是一种易于使用的工具,可用于设计基于人群的肺癌研究,并更好地规划资源分配,这在非小细胞肺癌引入新的靶向治疗方法后非常重要。

相似文献

7
Profile of lung cancer in kuwait.科威特肺癌概况
Asian Pac J Cancer Prev. 2013;14(10):6181-4. doi: 10.7314/apjcp.2013.14.10.6181.
9
Large-Cell Neuroendocrine Carcinoma of the Lung: A Population-Based Study.肺大细胞神经内分泌癌:一项基于人群的研究。
Clin Lung Cancer. 2020 Mar;21(2):e99-e113. doi: 10.1016/j.cllc.2019.07.011. Epub 2019 Aug 3.

引用本文的文献

5
Ion channels in lung cancer: biological and clinical relevance.肺癌中的离子通道:生物学及临床意义
Front Pharmacol. 2023 Oct 24;14:1283623. doi: 10.3389/fphar.2023.1283623. eCollection 2023.

本文引用的文献

2
Pathology and Classification of SCLC.小细胞肺癌的病理学与分类
Cancers (Basel). 2021 Feb 16;13(4):820. doi: 10.3390/cancers13040820.
7
Classification and Pathology of Lung Cancer.肺癌的分类与病理学
Surg Oncol Clin N Am. 2016 Jul;25(3):447-68. doi: 10.1016/j.soc.2016.02.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验