Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
Nat Metab. 2021 Sep;3(9):1242-1258. doi: 10.1038/s42255-021-00443-2. Epub 2021 Sep 9.
Mitochondria are the main site for generating reactive oxygen species, which are key players in diverse biological processes. However, the molecular pathways of redox signal transduction from the matrix to the cytosol are poorly defined. Here we report an inside-out redox signal of mitochondria. Cysteine oxidation of MIC60, an inner mitochondrial membrane protein, triggers the formation of disulfide bonds and the physical association of MIC60 with Miro, an outer mitochondrial membrane protein. The oxidative structural change of this membrane-crossing complex ultimately elicits cellular responses that delay mitophagy, impair cellular respiration and cause oxidative stress. Blocking the MIC60-Miro interaction or reducing either protein, genetically or pharmacologically, extends lifespan and health-span of healthy fruit flies, and benefits multiple models of Parkinson's disease and Friedreich's ataxia. Our discovery provides a molecular basis for common treatment strategies against oxidative stress.
线粒体是产生活性氧物种的主要场所,这些物质是多种生物过程中的关键参与者。然而,从基质到细胞质的氧化还原信号转导的分子途径还没有被很好地定义。在这里,我们报告了线粒体的一种内外氧化还原信号。作为一种线粒体内膜蛋白,MIC60 的半胱氨酸氧化触发了二硫键的形成和 MIC60 与线粒体外膜蛋白 Miro 的物理结合。这种跨膜复合物的氧化结构变化最终引发了细胞反应,延迟了线粒体自噬,损害了细胞呼吸,并导致了氧化应激。阻断 MIC60-Miro 相互作用或通过遗传或药理学手段降低这两种蛋白质的水平,可延长健康果蝇的寿命和健康寿命,并有益于多种帕金森病和弗里德里希共济失调模型。我们的发现为针对氧化应激的常见治疗策略提供了分子基础。