State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, 100871, Beijing, China.
National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
Nat Commun. 2020 Sep 8;11(1):4471. doi: 10.1038/s41467-020-18202-4.
A human cell contains hundreds to thousands of mitochondrial DNA (mtDNA) packaged into nucleoids. Currently, the segregation and allocation of nucleoids are thought to be passively determined by mitochondrial fusion and division. Here we provide evidence, using live-cell super-resolution imaging, that nucleoids can be actively transported via KIF5B-driven mitochondrial dynamic tubulation (MDT) activities that predominantly occur at the ER-mitochondria contact sites (EMCS). We further demonstrate that a mitochondrial inner membrane protein complex MICOS links nucleoids to Miro1, a KIF5B receptor on mitochondria, at the EMCS. We show that such active transportation is a mechanism essential for the proper distribution of nucleoids in the peripheral zone of the cell. Together, our work identifies an active transportation mechanism of nucleoids, with EMCS serving as a key platform for the interplay of nucleoids, MICOS, Miro1, and KIF5B to coordinate nucleoids segregation and transportation.
人类细胞中含有数百到数千个包装成核小体的线粒体 DNA(mtDNA)。目前,核小体的分离和分配被认为是由线粒体融合和分裂被动决定的。在这里,我们使用活细胞超分辨率成像提供了证据,表明核小体可以通过 KIF5B 驱动的线粒体动态管状化(MDT)活动被主动运输,而这些活动主要发生在线粒体与内质网接触位点(EMCS)。我们进一步证明,线粒体内膜蛋白复合物 MICOS 将核小体与线粒体上的 KIF5B 受体 Miro1 连接在 EMCS 上。我们表明,这种主动运输是核小体在细胞外周区正确分布所必需的机制。总之,我们的工作确定了核小体的主动运输机制,其中 EMCS 作为核小体、MICOS、Miro1 和 KIF5B 相互作用的关键平台,协调核小体的分离和运输。