Optophysiology, University of Freiburg, Faculty of Biology, Freiburg, Germany.
Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland | RCSI, Dublin 2, Ireland.
Nat Commun. 2021 Sep 10;12(1):5390. doi: 10.1038/s41467-021-25558-8.
The smooth conduct of movements requires simultaneous motor planning and execution according to internal goals. So far it remains unknown how such movement plans are modified without interfering with ongoing movements. Previous studies have isolated planning and execution-related neuronal activity by separating behavioral planning and movement periods in time by sensory cues. Here, we separate continuous self-paced motor planning from motor execution statistically, by experimentally minimizing the repetitiveness of the movements. This approach shows that, in the rat sensorimotor cortex, neuronal motor planning processes evolve with slower dynamics than movement-related responses. Fast-evolving neuronal activity precees skilled forelimb movements and is nested within slower dynamics. We capture this effect via high-pass filtering and confirm the results with optogenetic stimulations. The various dynamics combined with adaptation-based high-pass filtering provide a simple principle for separating concurrent motor planning and execution.
运动的顺利进行需要根据内部目标同时进行运动规划和执行。到目前为止,人们还不知道如何在不干扰正在进行的运动的情况下修改这些运动计划。以前的研究通过在时间上用感官提示将行为规划和运动期分开,从而分离出与计划和执行相关的神经元活动。在这里,我们通过实验性地最小化运动的重复性,从统计学上分离出连续的自我调节运动规划和运动执行。这种方法表明,在大鼠感觉运动皮层中,神经元运动规划过程的演变速度比运动相关反应慢。快速演变的神经元活动先于熟练的前肢运动,并嵌套在较慢的动力学中。我们通过高通滤波来捕获这种效应,并通过光遗传学刺激来验证结果。各种动态结合基于适应的高通滤波,为分离并发的运动规划和执行提供了一个简单的原理。