University of Michigan, 500 S State St, Ann Arbor, MI, 48109, USA.
King's College London, Strand, London, UK.
Sci Rep. 2021 Sep 10;11(1):18066. doi: 10.1038/s41598-021-97355-8.
Coronary Artery Disease (CAD) is commonly diagnosed using X-ray angiography, in which images are taken as radio-opaque dye is flushed through the coronary vessels to visualize the severity of vessel narrowing, or stenosis. Cardiologists typically use visual estimation to approximate the percent diameter reduction of the stenosis, and this directs therapies like stent placement. A fully automatic method to segment the vessels would eliminate potential subjectivity and provide a quantitative and systematic measurement of diameter reduction. Here, we have designed a convolutional neural network, AngioNet, for vessel segmentation in X-ray angiography images. The main innovation in this network is the introduction of an Angiographic Processing Network (APN) which significantly improves segmentation performance on multiple network backbones, with the best performance using Deeplabv3+ (Dice score 0.864, pixel accuracy 0.983, sensitivity 0.918, specificity 0.987). The purpose of the APN is to create an end-to-end pipeline for image pre-processing and segmentation, learning the best possible pre-processing filters to improve segmentation. We have also demonstrated the interchangeability of our network in measuring vessel diameter with Quantitative Coronary Angiography. Our results indicate that AngioNet is a powerful tool for automatic angiographic vessel segmentation that could facilitate systematic anatomical assessment of coronary stenosis in the clinical workflow.
冠状动脉疾病(CAD)通常使用 X 射线血管造影术进行诊断,其中在将放射性不透射线染料冲洗通过冠状动脉以可视化血管狭窄或狭窄的严重程度时会拍摄图像。心脏病专家通常使用视觉估计来近似估计狭窄的直径减少百分比,这指导支架放置等治疗方法。血管的全自动分割方法将消除潜在的主观性,并提供对直径减小的定量和系统测量。在这里,我们设计了一种用于 X 射线血管造影图像中血管分割的卷积神经网络 AngioNet。该网络的主要创新是引入了血管造影处理网络(APN),该网络在多个网络主干上显著提高了分割性能,使用 Deeplabv3+ 的性能最佳(Dice 得分为 0.864,像素准确率为 0.983,灵敏度为 0.918,特异性为 0.987)。APN 的目的是创建用于图像预处理和分割的端到端管道,学习最佳的预处理滤波器以改善分割。我们还证明了我们的网络在使用定量冠状动脉造影术测量血管直径方面的可互换性。我们的结果表明,AngioNet 是一种用于自动血管造影血管分割的强大工具,可促进在临床工作流程中对冠状动脉狭窄的系统解剖评估。