Kovalchick Michael, Lee Hyeok Jun, Klochko Chad, Thind Kundan
Department of Radiation Oncology, Henry Ford Health, Detroit, MI, USA.
Wayne State University, Detroit, MI, USA.
J Imaging Inform Med. 2025 Jan 27. doi: 10.1007/s10278-024-01349-7.
Automatic segmentation of angiographic structures can aid in assessing vascular disease. While recent deep learning models promise automation, they lack validation on interventional angiographic data. This study investigates the feasibility of angiographic segmentation using in-context learning with the UniverSeg model, which is a cross-learning segmentation model that lacks inherent angiographic training. A retrospective review, after IRB approval, identified 234 patients who underwent interventional fluoroscopy of the celiac axis with iodinated contrast from January 1, 2019, to December 31, 2022. From 261 acquisitions, 303 maximum contrast images were selected, each generating a 128 × 128 pixel partition for arterial detail analysis and binary mask creation. Image-mask pairs were divided into three classes of 101 pairs each, based on arterial diameter and bifurcation number. UniverSeg was tested class independently in a fivefold nested cross-validation. Performance analysis for in-context learning determined average model convergence for class sizes from 1 to 81 pairs. The model was further validated by repeating the tests on the inverse segmentation task. Dice similarity coefficients for decreasing diameters were 78.7%, 72.5%, and 59.9% (σ = 5.96, 7.99, 14.29). Balanced average Hausdorff distances were 0.86, 0.71, and 1.16 (σ = 0.37, 0.52, 0.68) pixels, respectively. Inverted mask testing aligned with UniverSeg expectations for out-of-context problem sets. Performance improved with support class size, vessel diameter, and reduced bifurcations, plateauing to within ± 1.34 Dice score at N = 51. This study validates UniverSeg for arterial segmentation in interventional fluoroscopic procedures, supporting vascular disease modeling and imaging research.
血管造影结构的自动分割有助于评估血管疾病。虽然最近的深度学习模型有望实现自动化,但它们缺乏对介入性血管造影数据的验证。本研究使用UniverSeg模型研究上下文学习在血管造影分割中的可行性,该模型是一种缺乏固有血管造影训练的交叉学习分割模型。经机构审查委员会(IRB)批准后进行回顾性研究,确定了234例在2019年1月1日至2022年12月31日期间接受了含碘造影剂的腹腔干介入性荧光透视检查的患者。从261次采集中,选择了303张最大对比度图像,每张图像生成一个128×128像素的分区用于动脉细节分析和二元掩码创建。根据动脉直径和分支数量,图像-掩码对被分为三类,每类101对。UniverSeg在五重嵌套交叉验证中独立于类别进行测试。上下文学习的性能分析确定了类别大小从1到81对时的平均模型收敛情况。通过对逆分割任务重复测试进一步验证了该模型。直径减小情况下的骰子相似系数分别为78.7%、72.5%和59.9%(标准差分别为5.96、7.99、14.29)。平衡平均豪斯多夫距离分别为0.86、0.71和1.16(标准差分别为0.37、0.52、0.68)像素。反向掩码测试与UniverSeg对上下文无关问题集的预期一致。性能随着支持类别大小、血管直径的增加以及分支数量的减少而提高,在N = 51时达到±1.34骰子分数范围内的平稳状态。本研究验证了UniverSeg在介入性荧光透视检查中用于动脉分割的有效性,为血管疾病建模和成像研究提供了支持。