IEEE Trans Biomed Eng. 2020 May;67(5):1338-1348. doi: 10.1109/TBME.2019.2936460. Epub 2019 Sep 3.
To facilitate the analysis and diagnosis of X-ray coronary angiography in interventional surgery, it is necessary to extract vessel from X-ray coronary angiography. However, vessel images of angiography suffer from low quality with large artefacts, which challenges the existing vascular technology.
In this paper, we propose a ávessel framework to detect vessels and segment vessels in angiographic vessel data. In this framework, we develop a new matrix decomposition model with gradient sparse in the tensor representation. Then, the energy function with the input of the hierarchical vessel is used in vessel detection and vessel segmentation.
Through experiments conducted on angiographic data, we have demonstrated the good performance of the proposed method in removing background structure.
We evaluated our method for vessel detection and segmentation in different clinical settings, including LAO/RAO with cranial and caudal angulation, and showed its competitive results compared with eight state-of-the-art methods in terms of extensive qualitative and quantitative evaluation.
Our method can remove a large number of background artefacts and obtain a better vascular structure, which has contributed to the clinical diagnosis of coronary artery diseases.
为了便于介入手术中 X 射线冠状动脉造影的分析和诊断,有必要从 X 射线冠状动脉造影中提取血管。然而,造影的血管图像质量较低,存在大量伪影,这对现有的血管技术提出了挑战。
在本文中,我们提出了一种 á 血管框架,用于检测和分割造影血管数据中的血管。在该框架中,我们开发了一种具有张量表示中梯度稀疏的新矩阵分解模型。然后,使用分层血管的输入在血管检测和血管分割中使用能量函数。
通过对造影数据进行的实验,我们证明了所提出的方法在去除背景结构方面的良好性能。
我们在不同的临床环境中评估了我们的血管检测和分割方法,包括 LAO/RAO 颅侧和尾侧倾斜,以及在广泛的定性和定量评估方面与八种最先进的方法进行了比较,显示了其具有竞争力的结果。
我们的方法可以去除大量的背景伪影,并获得更好的血管结构,这有助于冠状动脉疾病的临床诊断。