Suppr超能文献

深度学习预测肌层浸润性膀胱癌组织病理学中的淋巴管浸润状态。

Deep Learning Predicts Lymphovascular Invasion Status in Muscle Invasive Bladder Cancer Histopathology.

作者信息

Jiao Panpan, Wu Shaolin, Yang Rui, Ni Xinmiao, Wu Jiejun, Wang Kai, Liu Xiuheng, Chen Zhiyuan, Zheng Qingyuan

机构信息

Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.

出版信息

Ann Surg Oncol. 2025 Jan;32(1):598-608. doi: 10.1245/s10434-024-16422-2. Epub 2024 Oct 29.

Abstract

BACKGROUND

Lymphovascular invasion (LVI) is linked to poor prognosis in patients with muscle-invasive bladder cancer (MIBC). Accurately identifying the LVI status in MIBC patients is crucial for effective risk stratification and precision treatment. We aim to develop a deep learning model to identify the LVI status in whole-slide images (WSIs) of MIBC patients.

PATIENTS AND METHODS

A cohort from The Cancer Genome Atlas (TCGA) database was used to train a deep learning model, slide-based lymphovascular invasion predictor (SBLVIP), based on multiple-instance learning. This model was externally validated using the Renmin Hospital of Wuhan University (RHWU) and People's Hospital of Hanchuan City (PHHC) cohorts. Kaplan-Meier curves, along with univariate and multivariate Cox models, were employed to evaluate the association between the LVI status predicted by SBLVIP and the survival outcomes of MIBC patients.

RESULTS

In the TCGA cohort, the SBLVIP model achieved an average accuracy of 0.804 [95% confidence interval (CI) 0.712-0.895] and an area under the receiver operating characteristic curve (AUC) of 0.77 (95% CI 0.63-0.84) in the training set. In the internal validation set, the model's average accuracy and AUC were 0.774 (95% CI, 0.701-0.846) and 0.76 (95% CI, 0.60-0.83), respectively. In the RHWU cohort, the SBLVIP model achieved an average accuracy of 0.807 (95% CI 0.734-0.880) and an AUC of 0.74 (95% CI 0.55-0.83). In the PHHC cohort, SBLVIP demonstrated an average accuracy of 0.821 (95% CI 0.737-0.909) and an AUC of 0.74 (95% CI 0.58-0.89). Moreover, the LVI status predicted by SBLVIP showed significant independent prognostic value (P = 1 × 10).

CONCLUSIONS

We developed a deep learning model named SBLVIP to predict the LVI status in routine WSIs of MIBC patients.

摘要

背景

淋巴管浸润(LVI)与肌层浸润性膀胱癌(MIBC)患者的不良预后相关。准确识别MIBC患者的LVI状态对于有效的风险分层和精准治疗至关重要。我们旨在开发一种深度学习模型,以识别MIBC患者全切片图像(WSIs)中的LVI状态。

患者与方法

使用来自癌症基因组图谱(TCGA)数据库的队列,基于多实例学习训练深度学习模型——基于玻片的淋巴管浸润预测器(SBLVIP)。该模型在武汉大学人民医院(RHWU)和汉川市人民医院(PHHC)队列中进行外部验证。采用Kaplan-Meier曲线以及单变量和多变量Cox模型,评估SBLVIP预测的LVI状态与MIBC患者生存结果之间的关联。

结果

在TCGA队列中,SBLVIP模型在训练集中的平均准确率为0.804[95%置信区间(CI)0.712 - 0.895],受试者操作特征曲线(AUC)下面积为0.77(95% CI 0.63 - 0.84)。在内部验证集中,该模型的平均准确率和AUC分别为0.774(95% CI,0.701 - 0.846)和0.76(95% CI,0.60 - 0.83)。在RHWU队列中,SBLVIP模型的平均准确率为0.807(95% CI 0.734 - 0.880),AUC为0.74(95% CI 0.55 - 0.83)。在PHHC队列中,SBLVIP的平均准确率为0.821(95% CI 0.737 - 0.909),AUC为0.74(95% CI 0.58 - 0.89)。此外,SBLVIP预测的LVI状态显示出显著的独立预后价值(P = 1×10)。

结论

我们开发了一种名为SBLVIP的深度学习模型,用于预测MIBC患者常规WSIs中的LVI状态。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验