Suppr超能文献

利用人工智能的力量改善非黑素瘤皮肤癌的诊断和管理。

Using the power of artificial intelligence to improve the diagnosis and management of nonmelanoma skin cancer.

作者信息

Abdollahimajd Fahimeh, Abbasi Fatemeh, Motamedi Alireza, Koohi Narges, Robati Reza Mohamoud, Gorji Mona

机构信息

Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.

出版信息

J Res Med Sci. 2025 Apr 30;30:25. doi: 10.4103/jrms.jrms_607_24. eCollection 2025.

Abstract

Nonmelanoma skin cancer (NMSC), including basal cell carcinoma and squamous cell carcinoma, is the most prevalent type of skin cancer. While generally less aggressive than melanoma, early detection and treatment are crucial to prevent the complications. Artificial intelligence (AI) systems show promise in enhancing the accuracy, efficiency, and accessibility of NMSC diagnosis and management. These systems can facilitate early interventions, reduce unnecessary procedures, and promote collaboration among healthcare providers. Despite AI algorithms demonstrating moderate-to-high performance in diagnosing NMSC, several challenges remain. Ensuring the robustness, explainability, and generalizability of these models is vital. Collaborative efforts focusing on data diversity, image quality standards, and ethical considerations are necessary to address these issues. Building patient trust is also essential for the successful implementation of AI in the clinical settings. AI algorithms may outperform experts in controlled environments but can fall short in the real-world clinical applications, indicating a need for more prospective studies to evaluate their effectiveness in the practical scenarios. Continued research and development are essential to fully realize AI's potential in improving NMSC diagnosis and management by overcoming the existing challenges and conducting comprehensive studies.

摘要

非黑色素瘤皮肤癌(NMSC),包括基底细胞癌和鳞状细胞癌,是最常见的皮肤癌类型。虽然通常比黑色素瘤的侵袭性小,但早期发现和治疗对于预防并发症至关重要。人工智能(AI)系统在提高NMSC诊断和管理的准确性、效率和可及性方面显示出前景。这些系统可以促进早期干预,减少不必要的程序,并促进医疗保健提供者之间的协作。尽管AI算法在诊断NMSC方面表现出中等至高度的性能,但仍存在一些挑战。确保这些模型的稳健性、可解释性和通用性至关重要。为解决这些问题,需要集中精力在数据多样性、图像质量标准和伦理考量方面开展合作。在临床环境中成功实施AI,建立患者信任也至关重要。AI算法在受控环境中可能优于专家,但在实际临床应用中可能不足,这表明需要更多前瞻性研究来评估其在实际场景中的有效性。持续的研发对于通过克服现有挑战并进行全面研究来充分实现AI在改善NMSC诊断和管理方面的潜力至关重要。

相似文献

1
Using the power of artificial intelligence to improve the diagnosis and management of nonmelanoma skin cancer.
J Res Med Sci. 2025 Apr 30;30:25. doi: 10.4103/jrms.jrms_607_24. eCollection 2025.
2
Artificial Intelligence, the Digital Surgeon: Unravelling Its Emerging Footprint in Healthcare - The Narrative Review.
J Multidiscip Healthc. 2024 Aug 15;17:4011-4022. doi: 10.2147/JMDH.S482757. eCollection 2024.
3
Artificial intelligence in hospital infection prevention: an integrative review.
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.
4
Artificial intelligence for nonmelanoma skin cancer.
Clin Dermatol. 2024 Sep-Oct;42(5):466-476. doi: 10.1016/j.clindermatol.2024.06.016. Epub 2024 Jun 24.
5
The Role of Artificial Intelligence in the Diagnosis of Melanoma.
Cureus. 2024 Sep 20;16(9):e69818. doi: 10.7759/cureus.69818. eCollection 2024 Sep.
6
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
7
Artificial intelligence for breast cancer detection and its health technology assessment: A scoping review.
Comput Biol Med. 2025 Jan;184:109391. doi: 10.1016/j.compbiomed.2024.109391. Epub 2024 Nov 22.
8
AI in dermatology: a comprehensive review into skin cancer detection.
PeerJ Comput Sci. 2024 Dec 5;10:e2530. doi: 10.7717/peerj-cs.2530. eCollection 2024.
9
Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases.
J Electrocardiol. 2024 Mar-Apr;83:30-40. doi: 10.1016/j.jelectrocard.2024.01.006. Epub 2024 Jan 28.
10
Revolutionizing e-health: the transformative role of AI-powered hybrid chatbots in healthcare solutions.
Front Public Health. 2025 Feb 13;13:1530799. doi: 10.3389/fpubh.2025.1530799. eCollection 2025.

本文引用的文献

1
Artificial intelligence and skin cancer.
Front Med (Lausanne). 2024 Mar 19;11:1331895. doi: 10.3389/fmed.2024.1331895. eCollection 2024.
2
The State of Artificial Intelligence in Skin Cancer Publications.
J Cutan Med Surg. 2024 Mar-Apr;28(2):146-152. doi: 10.1177/12034754241229361. Epub 2024 Feb 7.
3
Artificial intelligence for skin cancer detection and classification for clinical environment: a systematic review.
Front Med (Lausanne). 2024 Jan 8;10:1305954. doi: 10.3389/fmed.2023.1305954. eCollection 2023.
5
Innovative Topical Patches for Non-Melanoma Skin Cancer: Current Challenges and Key Formulation Considerations.
Pharmaceutics. 2023 Nov 3;15(11):2577. doi: 10.3390/pharmaceutics15112577.
6
Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check.
J Invest Dermatol. 2024 Mar;144(3):492-499. doi: 10.1016/j.jid.2023.10.004. Epub 2023 Nov 18.
8
Molecular Classifiers in Skin Cancers: Challenges and Promises.
Cancers (Basel). 2023 Sep 7;15(18):4463. doi: 10.3390/cancers15184463.
10
The accuracy of artificial intelligence used for non-melanoma skin cancer diagnoses: a meta-analysis.
BMC Med Inform Decis Mak. 2023 Jul 28;23(1):138. doi: 10.1186/s12911-023-02229-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验