Suppr超能文献

基于深度学习的光学相干断层扫描检测与定量分析脉络膜新生血管的临床研究:模型的建立和外部验证。

Clinically relevant deep learning for detection and quantification of geographic atrophy from optical coherence tomography: a model development and external validation study.

机构信息

NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK.

NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, UK; Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, Netherlands.

出版信息

Lancet Digit Health. 2021 Oct;3(10):e665-e675. doi: 10.1016/S2589-7500(21)00134-5. Epub 2021 Sep 8.

Abstract

BACKGROUND

Geographic atrophy is a major vision-threatening manifestation of age-related macular degeneration, one of the leading causes of blindness globally. Geographic atrophy has no proven treatment or method for easy detection. Rapid, reliable, and objective detection and quantification of geographic atrophy from optical coherence tomography (OCT) retinal scans is necessary for disease monitoring, prognostic research, and to serve as clinical endpoints for therapy development. To this end, we aimed to develop and validate a fully automated method to detect and quantify geographic atrophy from OCT.

METHODS

We did a deep-learning model development and external validation study on OCT retinal scans at Moorfields Eye Hospital Reading Centre and Clinical AI Hub (London, UK). A modified U-Net architecture was used to develop four distinct deep-learning models for segmentation of geographic atrophy and its constituent retinal features from OCT scans acquired with Heidelberg Spectralis. A manually segmented clinical dataset for model development comprised 5049 B-scans from 984 OCT volumes selected randomly from 399 eyes of 200 patients with geographic atrophy secondary to age-related macular degeneration, enrolled in a prospective, multicentre, phase 2 clinical trial for the treatment of geographic atrophy (FILLY study). Performance was externally validated on an independently recruited dataset from patients receiving routine care at Moorfields Eye Hospital (London, UK). The primary outcome was segmentation and classification agreement between deep-learning model geographic atrophy prediction and consensus of two independent expert graders on the external validation dataset.

FINDINGS

The external validation cohort included 884 B-scans from 192 OCT volumes taken from 192 eyes of 110 patients as part of real-life clinical care at Moorfields Eye Hospital between Jan 1, 2016, and Dec, 31, 2019 (mean age 78·3 years [SD 11·1], 58 [53%] women). The resultant geographic atrophy deep-learning model produced predictions similar to consensus human specialist grading on the external validation dataset (median Dice similarity coefficient [DSC] 0·96 [IQR 0·10]; intraclass correlation coefficient [ICC] 0·93) and outperformed agreement between human graders (DSC 0·80 [0·28]; ICC 0·79). Similarly, the three independent feature-specific deep-learning models could accurately segment each of the three constituent features of geographic atrophy: retinal pigment epithelium loss (median DSC 0·95 [IQR 0·15]), overlying photoreceptor degeneration (0·96 [0·12]), and hypertransmission (0·97 [0·07]) in the external validation dataset versus consensus grading.

INTERPRETATION

We present a fully developed and validated deep-learning composite model for segmentation of geographic atrophy and its subtypes that achieves performance at a similar level to manual specialist assessment. Fully automated analysis of retinal OCT from routine clinical practice could provide a promising horizon for diagnosis and prognosis in both research and real-life patient care, following further clinical validation FUNDING: Apellis Pharmaceuticals.

摘要

背景

年龄相关性黄斑变性是一种主要的致盲性眼病,是全球导致失明的主要原因之一。这种疾病目前尚无有效的治疗方法,也没有简便的检测方法。因此,需要从光学相干断层扫描(OCT)视网膜扫描中快速、可靠、客观地检测和量化地图状萎缩,以进行疾病监测、预后研究,并作为治疗开发的临床终点。为此,我们旨在开发和验证一种从 OCT 中自动检测和量化地图状萎缩的方法。

方法

我们在 Moorfields Eye Hospital Reading Centre 和 Clinical AI Hub(伦敦,英国)进行了一项关于 OCT 视网膜扫描的深度学习模型开发和外部验证研究。使用修改后的 U-Net 架构,我们为从 Heidelberg Spectralis 采集的 OCT 扫描中地图状萎缩及其组成视网膜特征的分割开发了四个不同的深度学习模型。用于模型开发的手动分割临床数据集由 399 只眼睛的 984 个 OCT 卷中随机选择的 5049 个 B 扫描组成,这些眼睛来自 200 名患有年龄相关性黄斑变性继发地图状萎缩的患者,这些患者参与了一项针对地图状萎缩治疗的前瞻性、多中心、2 期临床试验(FILLY 研究)。在 Moorfields Eye Hospital(伦敦,英国)接受常规护理的患者的独立招募数据集上对其进行了外部验证。主要结果是深度学习模型地图状萎缩预测与外部验证数据集中两位独立专家分级的一致性之间的分割和分类协议。

发现

外部验证队列包括 110 名患者 192 只眼中的 884 个 B 扫描,这些患者在 2016 年 1 月 1 日至 2019 年 12 月 31 日期间在 Moorfields Eye Hospital 接受了常规护理(平均年龄 78.3 岁[标准差 11.1],58 名[53%]女性)。由此产生的地图状萎缩深度学习模型在外部验证数据集上的预测与共识人类专家分级相似(中位数 Dice 相似系数[DSC]0.96[IQR 0.10];组内相关系数[ICC]0.93),并且优于人类分级之间的一致性(DSC 0.80[0.28];ICC 0.79)。同样,三个独立的特征特定深度学习模型可以在外部验证数据集中准确地分割地图状萎缩的三个组成特征:视网膜色素上皮丢失(中位数 DSC 0.95[IQR 0.15])、上方感光细胞变性(0.96[0.12])和高透射(0.97[0.07])。

解释

我们提出了一种完全开发和验证的深度学习复合模型,用于分割地图状萎缩及其亚型,其性能与手动专家评估相当。从常规临床实践中对视网膜 OCT 的全自动分析可能为研究和现实生活中的患者护理中的诊断和预后提供有希望的前景,需要进一步的临床验证。

资金

Apellis 制药公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验