Wei Wei, Patel Radhika Pooja, Laponogov Ivan, Cordeiro Maria Francesca, Veselkov Kirill
Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK.
Imperial College Ophthalmology Research Group, London NW1 5QH, UK.
Bioengineering (Basel). 2024 Nov 25;11(12):1191. doi: 10.3390/bioengineering11121191.
Macular atrophy (MA) is an irreversible endpoint of age-related macular degeneration (AMD), which is the leading cause of blindness in the world. Early detection is therefore an unmet need. We have developed a novel automated method to identify MA in patients undergoing follow-up with optical coherence tomography (OCT) for AMD based on the combination of 2D and 3D Unet architecture. Our automated detection of MA relies on specific structural changes in OCT, including six established atrophy-associated lesions. Using 1241 volumetric OCTs from 125 eyes (89 patients), the performance of this combination Unet architecture is extremely encouraging, with a mean dice similarity coefficient score of 0.90 ± 0.14 and a mean F1 score of 0.89 ± 0.14. These promising results have indicated superiority when compared to human graders, with a mean similarity of 0.71 ± 0.27. We believe this deep learning-aided tool would be useful to monitor patients with AMD, enabling the early detection of MA and supporting clinical decisions.
黄斑萎缩(MA)是年龄相关性黄斑变性(AMD)的不可逆终点,而AMD是全球失明的主要原因。因此,早期检测是一项尚未满足的需求。我们开发了一种新颖的自动化方法,基于二维和三维Unet架构的组合,在接受光学相干断层扫描(OCT)随访的AMD患者中识别MA。我们对MA的自动检测依赖于OCT中的特定结构变化,包括六个已确定的萎缩相关病变。使用来自125只眼睛(89名患者)的1241份容积OCT,这种组合Unet架构的性能非常令人鼓舞,平均骰子相似系数得分为0.90±0.14,平均F1得分为0.89±0.14。与人工分级相比,这些有前景的结果显示出优越性,平均相似度为0.71±0.27。我们相信这种深度学习辅助工具将有助于监测AMD患者,实现MA的早期检测并支持临床决策。