Ministry of Science, Technology and Innovation, National Program in Biotechnology, Bogota, Colombia.
Institute of Life Science, Swansea Universitygrid.4827.9 Medical School, Swansea, Wales, United Kingdom.
Antimicrob Agents Chemother. 2021 Nov 17;65(12):e0104421. doi: 10.1128/AAC.01044-21. Epub 2021 Sep 13.
The azole antifungals inhibit sterol 14α-demethylase (S14DM), leading to depletion of cellular ergosterol and the synthesis of an aberrant sterol diol that disrupts membrane function. In Candida albicans, sterol diol production is catalyzed by the C-5 sterol desaturase enzyme encoded by . Accordingly, mutations that inactivate enable the fungus to grow in the presence of the azoles. The purpose of this study was to compare the propensities of C-5 sterol desaturases from different fungal pathogens to produce the toxic diol upon S14DM inhibition and thus contribute to antifungal efficacy. The coding sequences of homologs from C. albicans (), Candida glabrata (), Candida auris (), Cryptococcus neoformans (), Aspergillus fumigatus () and Rhizopus delemar () were expressed in a C. albicans Δ/Δ mutant to facilitate comparative analysis. All but one of the Erg3p-like proteins (AfErg3C) at least partially restored C-5 sterol desaturase activity and to corresponding degrees rescued the stress and hyphal growth defects of the C. albicans Δ/Δ mutant, confirming functional equivalence. Each C-5 desaturase enzyme conferred markedly different responses to fluconazole exposure in terms of the MIC and residual growth observed at supra-MICs. Upon fluconazole-mediated inhibition of S14DM, the strains expressing each homolog also produced various levels of 14α-methylergosta-8,24(28)-dien-3β,6α-diol. The RdErg3A and AfErg3A proteins are notable for low levels of sterol diol production and failing to confer appreciable azole sensitivity upon the C. albicans Δ/Δ mutant. These findings suggest that species-specific properties of C-5 sterol desaturase may be an important determinant of intrinsic azole sensitivity.
唑类抗真菌药物抑制甾醇 14α-脱甲基酶(S14DM),导致细胞麦角固醇耗竭和异常甾醇二醇的合成,从而破坏膜功能。在白色念珠菌中,甾醇二醇的产生是由编码的 C-5 甾醇去饱和酶催化的。因此,使失活的突变使真菌能够在唑类存在的情况下生长。本研究的目的是比较来自不同真菌病原体的 C-5 甾醇去饱和酶在 S14DM 抑制后产生有毒二醇的倾向,从而有助于抗真菌功效。白色念珠菌()、光滑念珠菌()、耳念珠菌()、新型隐球菌()、烟曲霉()和根霉()的 同源物的编码序列在白色念珠菌 Δ/Δ 突变体中表达,以促进比较分析。除一种 Erg3p 样蛋白(AfErg3C)外,所有蛋白(除一种 Erg3p 样蛋白(AfErg3C)外)至少部分恢复了 C-5 甾醇去饱和酶活性,并相应程度地挽救了白色念珠菌 Δ/Δ 突变体的应激和菌丝生长缺陷,证实了功能等效性。每种 C-5 去饱和酶在氟康唑暴露方面表现出明显不同的反应,表现在 MIC 和超 MIC 时观察到的残留生长方面。在氟康唑介导的 S14DM 抑制后,表达每种同源物的菌株也产生了不同水平的 14α-甲基麦角甾-8,24(28)-二烯-3β,6α-二醇。RdErg3A 和 AfErg3A 蛋白的特点是产生的甾醇二醇水平低,并且不能赋予白色念珠菌 Δ/Δ 突变体对唑类药物的显著敏感性。这些发现表明,C-5 甾醇去饱和酶的种特异性特性可能是固有唑类敏感性的重要决定因素。