Yoon Jeehyun, Grinchuk Oleg V, Kannan Srinivasaraghavan, Ang Melgious Jin Yan, Li Zhenglin, Tay Emmy Xue Yun, Lok Ker Zhing, Lee Bernice Woon Li, Chuah You Heng, Chia Kimberly, Tirado Magallanes Roberto, Liu Chenfei, Zhao Haonan, Hor Jin Hui, Lim Jhin Jieh, Benoukraf Touati, Toh Tan Boon, Chow Edward Kai-Hua, Kovalik Jean-Paul, Ching Jianhong, Ng Shi-Yan, Koh Ming Joo, Liu Xiaogang, Verma Chandra Shekhar, Ong Derrick Sek Tong
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Sci Adv. 2021 Sep 3;7(36):eabf6033. doi: 10.1126/sciadv.abf6033.
Glioblastoma (GBM) is a uniformly lethal disease driven by glioma stem cells (GSCs). Here, we use a chemical biology approach to unveil previously unknown GBM dependencies. By studying sulconazole (SN) with anti-GSC properties, we find that SN disrupts biotin distribution to the carboxylases and histones. Transcriptomic and metabolomic analyses of SN-treated GSCs reveal metabolic alterations that are characteristic of biotin-deficient cells, including intracellular cholesterol depletion, impairment of oxidative phosphorylation, and energetic crisis. Furthermore, SN treatment reduces histone biotinylation, histone acetylation, and expression of superenhancer-associated GSC critical genes, which are also observed when biotin distribution is genetically disrupted by holocarboxylase synthetase () depletion. silencing impaired GSC tumorigenicity in an orthotopic xenograft brain tumor model. In GBM, high expression robustly indicates a poor prognosis. Thus, the dependency of GBM on biotin distribution suggests that the rational cotargeting of biotin-dependent metabolism and epigenetic pathways may be explored for GSC eradication.
胶质母细胞瘤(GBM)是一种由胶质瘤干细胞(GSCs)驱动的致死性疾病。在此,我们采用化学生物学方法来揭示此前未知的GBM依赖性。通过研究具有抗GSC特性的硫康唑(SN),我们发现SN会破坏生物素向羧化酶和组蛋白的分布。对经SN处理的GSCs进行转录组学和代谢组学分析,揭示了生物素缺乏细胞所特有的代谢改变,包括细胞内胆固醇耗竭、氧化磷酸化受损和能量危机。此外,SN处理会降低组蛋白生物素化、组蛋白乙酰化以及与超级增强子相关的GSC关键基因的表达,当通过全羧化酶合成酶()缺失在基因上破坏生物素分布时,也会观察到这些现象。在原位异种移植脑肿瘤模型中,沉默会损害GSC的致瘤性。在GBM中,高表达强烈预示着预后不良。因此,GBM对生物素分布的依赖性表明,或许可以探索对生物素依赖性代谢和表观遗传途径进行合理的共同靶向,以根除GSC。