Suppr超能文献

社会特征的认知图谱使在社交网络中进行灵活的推理成为可能。

Cognitive maps of social features enable flexible inference in social networks.

机构信息

Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912.

Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912;

出版信息

Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2021699118.

Abstract

In order to navigate a complex web of relationships, an individual must learn and represent the connections between people in a social network. However, the sheer size and complexity of the social world makes it impossible to acquire firsthand knowledge of all relations within a network, suggesting that people must make inferences about unobserved relationships to fill in the gaps. Across three studies ( = 328), we show that people can encode information about social features (e.g., hobbies, clubs) and subsequently deploy this knowledge to infer the existence of unobserved friendships in the network. Using computational models, we test various feature-based mechanisms that could support such inferences. We find that people's ability to successfully generalize depends on two representational strategies: a simple but inflexible similarity heuristic that leverages homophily, and a complex but flexible cognitive map that encodes the statistical relationships between social features and friendships. Together, our studies reveal that people can build cognitive maps encoding arbitrary patterns of latent relations in many abstract feature spaces, allowing social networks to be represented in a flexible format. Moreover, these findings shed light on open questions across disciplines about how people learn and represent social networks and may have implications for generating more human-like link prediction in machine learning algorithms.

摘要

为了在复杂的人际关系网络中进行导航,个体必须学习并表示社交网络中人与人之间的联系。然而,社交世界的庞大和复杂性使得人们不可能直接获取网络中所有关系的第一手知识,这表明人们必须根据未观察到的关系进行推断,以填补空白。在三项研究中(n=328),我们表明,人们可以对社交特征(如爱好、俱乐部)进行编码,然后利用这些知识推断网络中未观察到的友谊的存在。我们使用计算模型测试了各种基于特征的机制,这些机制可以支持这种推断。我们发现,人们成功进行推断的能力取决于两种表示策略:一种是简单但不灵活的相似性启发式策略,利用同质性;另一种是复杂但灵活的认知图策略,它编码了社交特征和友谊之间的统计关系。总的来说,我们的研究揭示了人们可以构建认知图,在许多抽象的特征空间中编码潜在关系的任意模式,从而以灵活的格式表示社交网络。此外,这些发现揭示了关于人们如何学习和表示社交网络的跨学科问题,并且可能对机器学习算法中生成更像人类的链接预测产生影响。

相似文献

2
Abstract cognitive maps of social network structure aid adaptive inference.抽象的社会网络结构认知图有助于适应性推理。
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2310801120. doi: 10.1073/pnas.2310801120. Epub 2023 Nov 14.
4
Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps.制图:抽象认知图的构建、组合和推断。
Neuron. 2020 Sep 23;107(6):1226-1238.e8. doi: 10.1016/j.neuron.2020.06.030. Epub 2020 Jul 22.
8
10
A mathematical theory of relational generalization in transitive inference.关系泛化在传递推理中的数学理论。
Proc Natl Acad Sci U S A. 2024 Jul 9;121(28):e2314511121. doi: 10.1073/pnas.2314511121. Epub 2024 Jul 5.

引用本文的文献

8
Processing of social closeness in the human brain.人类大脑中对社交亲近程度的处理。
Commun Biol. 2024 Oct 10;7(1):1293. doi: 10.1038/s42003-024-06934-8.
9
Replay shapes abstract cognitive maps for efficient social navigation.重放塑造用于高效社交导航的抽象认知图。
Nat Hum Behav. 2024 Nov;8(11):2156-2167. doi: 10.1038/s41562-024-01990-w. Epub 2024 Sep 19.
10
Ingroup sources enhance associative inference.内群体信息源增强联想推理。
Commun Psychol. 2023 Dec 14;1(1):40. doi: 10.1038/s44271-023-00043-8.

本文引用的文献

1
Learning Structures: Predictive Representations, Replay, and Generalization.学习结构:预测性表征、回放与泛化。
Curr Opin Behav Sci. 2020 Apr;32:155-166. doi: 10.1016/j.cobeha.2020.02.017. Epub 2020 May 5.
3
Brain Coding of Social Network Structure.社交网络结构的大脑编码。
J Neurosci. 2021 Jun 2;41(22):4897-4909. doi: 10.1523/JNEUROSCI.2641-20.2021. Epub 2021 Apr 26.
6
Multi-task reinforcement learning in humans.人类的多任务强化学习。
Nat Hum Behav. 2021 Jun;5(6):764-773. doi: 10.1038/s41562-020-01035-y. Epub 2021 Jan 28.
7
Hippocampus Guides Adaptive Learning during Dynamic Social Interactions.海马体引导动态社交互动中的适应性学习。
J Neurosci. 2021 Feb 10;41(6):1340-1348. doi: 10.1523/JNEUROSCI.0873-20.2020. Epub 2020 Dec 23.
8
Structuring Knowledge with Cognitive Maps and Cognitive Graphs.用认知图和认知图构建知识。
Trends Cogn Sci. 2021 Jan;25(1):37-54. doi: 10.1016/j.tics.2020.10.004. Epub 2020 Nov 26.
10
Reward-predictive representations generalize across tasks in reinforcement learning.在强化学习中,奖励预测表示可以跨任务泛化。
PLoS Comput Biol. 2020 Oct 15;16(10):e1008317. doi: 10.1371/journal.pcbi.1008317. eCollection 2020 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验