Lu Hongliang, Zhu Meixin, Lu Chao, Feng Shuo, Wang Xuesong, Wang Yinhai, Yang Hai
Intelligent Transportation Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, Guangdong, China.
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2401626122. doi: 10.1073/pnas.2401626122. Epub 2025 May 19.
Autonomous vehicles (AVs) will soon cruise our roads as a global undertaking. Beyond completing driving tasks, AVs are expected to incorporate ethical considerations into their operation. However, a critical challenge remains. When multiple road users are involved, their impacts on AV ethical decision-making are distinct yet interrelated. Current AVs lack social sensitivity in ethical decisions, failing to enable both differentiated consideration of road users and a holistic view of their collective impact. Drawing on research in AV ethics and neuroscience, we propose a scheme based on social concern and human-plausible cognitive encoding. Specifically, we first assess the individual impact that each road user poses to the AV based on risk. Then, social concern can differentiate these impacts by weighting the risks according to road user categories. Through cognitive encoding, these independent impacts are holistically encoded into a behavioral belief, which in turn supports ethical decisions that consider the collective impact of all involved parties. A total of two thousand benchmark scenarios from CommonRoad are used for evaluation. Empirical results show that our scheme enables safer and more ethical decisions, reducing overall risk by 26.3%, with a notable 22.9% decrease for vulnerable road users. In accidents, we enhance self-protection by 8.3%, improve protection for all road users by 17.6%, and significantly boost protection for vulnerable road users by 51.7%. As a human-inspired practice, this work renders AVs socially sensitive to overcome future ethical challenges in everyday driving.
自动驾驶汽车(AVs)即将作为一项全球性事业在我们的道路上行驶。除了完成驾驶任务外,自动驾驶汽车还应在其运行中纳入伦理考量。然而,一个关键挑战依然存在。当涉及多个道路使用者时,他们对自动驾驶汽车伦理决策的影响虽各不相同但又相互关联。当前的自动驾驶汽车在伦理决策中缺乏社会敏感度,无法对道路使用者进行差异化考量,也无法全面考虑他们的集体影响。借鉴自动驾驶汽车伦理和神经科学的研究成果,我们提出了一种基于社会关注和人类似认知编码的方案。具体而言,我们首先根据风险评估每个道路使用者对自动驾驶汽车造成的个体影响。然后,社会关注可以根据道路使用者类别对风险进行加权,从而区分这些影响。通过认知编码,这些独立的影响被整体编码为一种行为信念,进而支持考虑所有相关方集体影响的伦理决策。我们使用了来自CommonRoad的总共2000个基准场景进行评估。实证结果表明,我们的方案能够做出更安全、更符合伦理的决策,将总体风险降低26.3%,对弱势道路使用者的风险显著降低22.9%。在事故中,我们将自我保护提高了8.3%,对所有道路使用者的保护提高了17.6%,对弱势道路使用者的保护显著提高了51.7%。作为一种受人类启发的实践,这项工作使自动驾驶汽车具有社会敏感度,以克服日常驾驶中未来的伦理挑战。