Suppr超能文献

蛋白酶触发的生物响应性药物递送用于恶性肿瘤的靶向治疗诊断。

Protease-triggered bioresponsive drug delivery for the targeted theranostics of malignancy.

作者信息

Li Yanan, Zhang Cangang, Li Guo, Deng Guowei, Zhang Hui, Sun Yongbing, An Feifei

机构信息

College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China.

Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China.

出版信息

Acta Pharm Sin B. 2021 Aug;11(8):2220-2242. doi: 10.1016/j.apsb.2021.01.017. Epub 2021 Jan 24.

Abstract

Proteases have a fundamental role in maintaining physiological homeostasis, but their dysregulation results in severe activity imbalance and pathological conditions, including cancer onset, progression, invasion, and metastasis. This striking importance plus superior biological recognition and catalytic performance of proteases, combining with the excellent physicochemical characteristics of nanomaterials, results in enzyme-activated nano-drug delivery systems (nanoDDS) that perform theranostic functions in highly specific response to the tumor phenotype stimulus. In the tutorial review, the key advances of protease-responsive nanoDDS in the specific diagnosis and targeted treatment for malignancies are emphatically classified according to the effector biomolecule types, on the premise of summarizing the structure and function of each protease. Subsequently, the incomplete matching and recognition between enzyme and substrate, structural design complexity, volume production, and toxicological issues related to the nanocomposites are highlighted to clarify the direction of efforts in nanotheranostics. This will facilitate the promotion of nanotechnology in the management of malignant tumors.

摘要

蛋白酶在维持生理稳态中发挥着重要作用,但其失调会导致严重的活性失衡和病理状况,包括癌症的发生、发展、侵袭和转移。蛋白酶具有显著的重要性以及卓越的生物识别和催化性能,再结合纳米材料出色的物理化学特性,催生了酶激活纳米药物递送系统(nanoDDS),该系统能够针对肿瘤表型刺激进行高度特异性响应,从而发挥诊疗功能。在这篇专题综述中,在总结每种蛋白酶的结构和功能的前提下,根据效应生物分子类型着重对蛋白酶响应性纳米药物递送系统在恶性肿瘤特异性诊断和靶向治疗方面的关键进展进行了分类。随后,强调了酶与底物之间不完全匹配和识别、结构设计复杂性、大规模生产以及与纳米复合材料相关的毒理学问题,以明确纳米诊疗学的努力方向。这将有助于推动纳米技术在恶性肿瘤治疗中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e96/8424222/907f4a28ff92/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验