Suppr超能文献

ICPTC:伊朗商业开心果树品种标准数据集。

ICPTC: Iranian commercial pistachio tree cultivars standard dataset.

作者信息

Heidary-Sharifabad Ahmad, Zarchi Mohsen Sardari, Zarei Gholamreza

机构信息

Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran.

Department of Computer Engineering, Meybod University, Meybod, Iran.

出版信息

Data Brief. 2021 Sep 4;38:107348. doi: 10.1016/j.dib.2021.107348. eCollection 2021 Oct.

Abstract

This paper contains datasets related to the "An efficient deep learning model for cultivar identification of a pistachio tree" [1]. There are about 11 species of pistachio that often have a high commercial and economic value in Iran and United States. The ability to identify pistachio tree cultivars, due to differences in the characteristics/traits of these species, is crucial for harvest the optimal yields, cost reduction, and damage prevention. For this purpose, identification of pistachio tree cultivars in their natural habitat is necessary. The cultivar identification relying on its appearance is a challenging vision task and can be facilitated by deep learning. The feasibility of applying deep learning algorithms to identify Pistachio tree cultivars depends on access to the appropriate relevant dataset. Therefore, ICPTC dataset was collected from natural habitats of different trees of Pistachio cultivars, in real-world conditions from pistachio orchard farms of Chah-Afzal region in Ardakan County, Yazd, Iran. This imbalanced dataset is compiled of 526 RGB color images from 4 Pistachio tree cultivars, each cultivar 109-171 images. The tree of Iranian commercial pistachio cultivars, with names like Jumbo (Kalle-Ghuchi), Long (Ahmad-Aghaei), Round (O'hadi), and Super-long (Akbari) have distinctive branch expansion, leaf patterns, leaf shapes and colors. Imaging is performed from multiple trees for each cultivar, with different camera-to-target distances, viewpoints, angles, and natural sunlight during April and May in the spring. The collected images are not pre-processed, only grouped into their respective class (Jumbo, Long, Round, and Super long). The images in each class are separated by 20% for testing, 17% for validation, and 63% for training. Test images are selected from trees different from the training set. Then training and validation images are randomly separated from the remaining images in each category. The ICPTC dataset is publicly and freely available at https://data.mendeley.com/datasets/6mmjjkpd5m/draft?a=af46a232-df30-4cf1-b303-6071d90ac8ad.

摘要

本文包含与“一种用于阿月浑子树品种识别的高效深度学习模型”[1]相关的数据集。在伊朗和美国,大约有11种阿月浑子通常具有很高的商业和经济价值。由于这些品种的特征/特性存在差异,识别阿月浑子树品种的能力对于实现最佳产量、降低成本和预防损害至关重要。为此,有必要在其自然栖息地识别阿月浑子树品种。依靠外观识别品种是一项具有挑战性的视觉任务,深度学习可以提供帮助。应用深度学习算法识别阿月浑子树品种的可行性取决于能否获取合适的相关数据集。因此,ICPTC数据集是从伊朗亚兹德省阿尔达坎县查赫-阿夫扎尔地区阿月浑子果园农场的现实环境中,不同阿月浑子品种树的自然栖息地收集而来。这个不均衡的数据集由来自4个阿月浑子树品种的526张RGB彩色图像组成,每个品种有109 - 171张图像。伊朗商业阿月浑子品种的树,如Jumbo(Kalle - Ghuchi)、Long(Ahmad - Aghaei)、Round(O'hadi)和Super - long(Akbari),具有独特的树枝伸展、叶片图案、叶片形状和颜色。在春季的4月和5月,针对每个品种从多棵树上进行成像,相机到目标的距离、视角、角度以及自然阳光各不相同。收集到的图像未经过预处理,仅被归类到各自的类别(Jumbo、Long、Round和Super long)。每个类别的图像按20%用于测试、17%用于验证、63%用于训练进行划分。测试图像从与训练集不同的树上选取。然后,训练图像和验证图像从每个类别中的其余图像中随机分离出来。ICPTC数据集可在https://data.mendeley.com/datasets/6mmjjkpd5m/draft?a=af46a232 - df30 - 4cf1 - b303 - 6071d90ac8ad上公开免费获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc62/8427229/a8fc5d1a4828/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验