Department of Biology, The Pennsylvania State University, Pennsylvania 16802, USA.
Plant Cell. 2022 Jan 20;34(1):273-286. doi: 10.1093/plcell/koab227.
Confocal imaging has shown that CELLULOSE SYNTHASE (CESA) particles move through the plasma membrane as they synthesize cellulose. However, the resolution limit of confocal microscopy circumscribes what can be discovered about these tiny biosynthetic machines. Here, we applied Structured Illumination Microscopy (SIM), which improves resolution two-fold over confocal or widefield imaging, to explore the dynamic behaviors of CESA particles in living plant cells. SIM imaging reveals that Arabidopsis thaliana CESA particles are more than twice as dense in the plasma membrane as previously estimated, helping explain the dense arrangement of cellulose observed in new wall layers. CESA particles tracked by SIM display minimal variation in velocity, suggesting coordinated control of CESA catalytic activity within single complexes and that CESA complexes might move steadily in tandem to generate larger cellulose fibrils or bundles. SIM data also reveal that CESA particles vary in their overlaps with microtubule tracks and can complete U-turns without changing speed. CESA track patterns can vary widely between neighboring cells of similar shape, implying that cellulose patterning is not the sole determinant of cellular growth anisotropy. Together, these findings highlight SIM as a powerful tool to advance CESA imaging beyond the resolution limit of conventional light microscopy.
共聚焦成像已经表明,在合成纤维素的过程中,纤维素合酶(CESA)颗粒会在质膜中移动。然而,共聚焦显微镜的分辨率限制了我们对这些微小生物合成机器的发现。在这里,我们应用结构光照明显微镜(SIM),它将分辨率提高了两倍,超过了共聚焦或宽场成像,以探索活植物细胞中 CESA 颗粒的动态行为。SIM 成像表明,拟南芥 CESA 颗粒在质膜中的密度比以前估计的要高出两倍以上,这有助于解释在新细胞壁层中观察到的纤维素的密集排列。通过 SIM 跟踪的 CESA 颗粒的速度变化很小,这表明单个复合物内 CESA 催化活性的协调控制,并且 CESA 复合物可能会稳定地协同移动,以产生更大的纤维素原纤维或束。SIM 数据还表明,CESA 颗粒在与微管轨道的重叠程度上存在差异,并且可以在不改变速度的情况下完成 U 形转弯。CESA 轨迹模式在形状相似的相邻细胞之间差异很大,这表明纤维素的图案化不是细胞生长各向异性的唯一决定因素。总之,这些发现突显了 SIM 作为一种强大的工具,可以将 CESA 成像推进到传统光学显微镜的分辨率极限之外。