Suppr超能文献

基于物理的、神经网络力场的反应分子动力学:[EMIM][OAc]中卡宾形成的研究。

Physics-based, neural network force fields for reactive molecular dynamics: Investigation of carbene formation from [EMIM][OAc].

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.

出版信息

J Chem Phys. 2021 Sep 14;155(10):104112. doi: 10.1063/5.0063187.

Abstract

Reactive molecular dynamics simulations enable a detailed understanding of solvent effects on chemical reaction mechanisms and reaction rates. While classical molecular dynamics using reactive force fields allows significantly longer simulation time scales and larger system sizes compared with ab initio molecular dynamics, constructing reactive force fields is a difficult and complex task. In this work, we describe a general approach following the empirical valence bond framework for constructing ab initio reactive force fields for condensed phase simulations by combining physics-based methods with neural networks (PB/NNs). The physics-based terms ensure the correct asymptotic behavior of electrostatic, polarization, and dispersion interactions and are compatible with existing solvent force fields. NNs are utilized for a versatile description of short-range orbital interactions within the transition state region and accurate rendering of vibrational motion of the reacting complex. We demonstrate our methodology for a simple deprotonation reaction of the 1-ethyl-3-methylimidazolium cation with acetate to form 1-ethyl-3-methylimidazol-2-ylidene and acetic acid. Our PB/NN force field exhibits ∼1 kJ mol mean absolute error accuracy within the transition state region for the gas-phase complex. To characterize the solvent modulation of the reaction profile, we compute potentials of mean force for the gas-phase reaction as well as the reaction within a four-ion cluster and benchmark against ab initio molecular dynamics simulations. We find that the surrounding ionic environment significantly destabilizes the formation of the carbene product, and we show that this effect is accurately captured by the reactive force field. By construction, the PB/NN potential may be directly employed for simulations of other solvents/chemical environments without additional parameterization.

摘要

反应分子动力学模拟使人们能够深入了解溶剂对化学反应机制和反应速率的影响。虽然使用反应力场的经典分子动力学方法与从头算分子动力学相比,可以显著延长模拟时间尺度和增大系统尺寸,但构建反应力场是一项困难而复杂的任务。在这项工作中,我们描述了一种通用方法,该方法遵循经验价键框架,通过将基于物理的方法与神经网络(PB/NNs)相结合,为凝聚相模拟构建从头算反应力场。基于物理的项确保了静电、极化和色散相互作用的正确渐近行为,并且与现有的溶剂力场兼容。神经网络用于在过渡态区域内对短程轨道相互作用进行灵活描述,并准确描绘反应复合物的振动运动。我们通过 1-乙基-3-甲基咪唑鎓阳离子与乙酸的简单去质子化反应来演示我们的方法,形成 1-乙基-3-甲基咪唑-2-亚基和乙酸。我们的 PB/NN 力场在气相复合物的过渡态区域内表现出约 1 kJ mol 的平均绝对误差精度。为了表征反应轮廓的溶剂调制,我们计算了气相反应以及在四离子簇内的反应的平均力势,并与从头算分子动力学模拟进行了基准测试。我们发现周围的离子环境会显著降低卡宾产物的形成稳定性,并且我们表明反应力场可以准确地捕捉到这种效应。通过构建,PB/NN 势能可以直接用于模拟其他溶剂/化学环境,而无需进行额外的参数化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验