Glick Zachary L, Metcalf Derek P, Glick Caroline S, Spronk Steven A, Koutsoukas Alexios, Cheney Daniel L, Sherrill C David
School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology Atlanta Georgia 30332-0400 USA
Molecular Structure and Design, Bristol Myers Squibb Company P.O. Box 5400 Princeton New Jersey 08543 USA.
Chem Sci. 2024 Jul 24;15(33):13313-13324. doi: 10.1039/d4sc01029a. eCollection 2024 Aug 22.
Quantifying intermolecular interactions with quantum chemistry (QC) is useful for many chemical problems, including understanding the nature of protein-ligand interactions. Unfortunately, QC computations on protein-ligand systems are too computationally expensive for most use cases. The flourishing field of machine-learned (ML) potentials is a promising solution, but it is limited by an inability to easily capture long range, non-local interactions. In this work we develop an atomic-pairwise neural network (AP-Net) specialized for modeling intermolecular interactions. This model benefits from a number of physical constraints, including a two-component equivariant message passing neural network architecture that predicts interaction energies an intermediate prediction of monomer electron densities. The AP-Net model is trained on a comprehensive dataset composed of paired ligand and protein fragments. This model accurately predicts QC-quality interaction energies of protein-ligand systems at a computational cost reduced by orders of magnitude. Applications of the AP-Net model to molecular crystal structure prediction are explored, as well as limitations in modeling highly polarizable systems.
用量子化学(QC)量化分子间相互作用对许多化学问题都很有用,包括理解蛋白质-配体相互作用的本质。不幸的是,对于大多数实际应用情况而言,对蛋白质-配体系统进行QC计算的计算成本过高。蓬勃发展的机器学习(ML)势场是一个很有前景的解决方案,但它受到无法轻松捕捉长程、非局部相互作用的限制。在这项工作中,我们开发了一种专门用于模拟分子间相互作用的原子对神经网络(AP-Net)。该模型受益于许多物理约束,包括一个双分量等变消息传递神经网络架构,该架构可预测相互作用能——单体电子密度的中间预测值。AP-Net模型在由配对的配体和蛋白质片段组成的综合数据集上进行训练。该模型能够以降低几个数量级的计算成本准确预测蛋白质-配体系统的QC质量相互作用能。我们探索了AP-Net模型在分子晶体结构预测中的应用,以及在模拟高极化系统时的局限性。