Morrow Jon S, Stankewich Michael C
Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA.
Molecular & Cellular Developmental Biology, Yale University, New Haven, CT 06520, USA.
J Exp Neurol. 2021;2(3):131-139.
Experimental and hereditary defects in the ubiquitous scaffolding proteins of the spectrin gene family cause an array of neuropathologies. Most recognized are ataxias caused by missense, deletions, or truncations in the SPTBN2 gene that encodes beta III spectrin. Such mutations disrupt the organization of post-synaptic receptors, their active transport through the secretory pathway, and the organization and dynamics of the actin-based neuronal skeleton. Similar mutations in SPTAN1 that encodes alpha II spectrin cause severe and usually lethal neurodevelopmental defects including one form of early infantile epileptic encephalopathy type 5 (West syndrome). Defects in these and other spectrins are implicated in degenerative and psychiatric conditions. In recent published work, we describe in mice a novel variant of alpha II spectrin that results in a progressive ataxia with widespread neurodegenerative change. The action of this variant is distinct, in that rather than disrupting a constitutive ligand-binding function of spectrin, the mutation alters its response to calcium and calmodulin-regulated signaling pathways including its response to calpain activation. As such, it represents a novel spectrinopathy that targets a key regulatory pathway where calcium and tyrosine kinase signals converge. Here we briefly discuss the various roles of spectrin in neuronal processes and calcium activated regulatory inputs that control its participation in neuronal growth, organization, and remodeling. We hypothesize that damage to the neuronal spectrin scaffold may be a common final pathway in many neurodegenerative disorders. Targeting the pathways that regulate spectrin function may thus offer novel avenues for therapeutic intervention.
血影蛋白基因家族普遍存在的支架蛋白中的实验性和遗传性缺陷会引发一系列神经病理学问题。最广为人知的是由编码βIII血影蛋白的SPTBN2基因中的错义、缺失或截短导致的共济失调。此类突变会破坏突触后受体的组织、它们通过分泌途径的主动运输,以及基于肌动蛋白的神经元骨架的组织和动态。编码αII血影蛋白的SPTAN1中的类似突变会导致严重且通常致命的神经发育缺陷,包括一种5型早期婴儿癫痫性脑病(韦斯特综合征)。这些血影蛋白和其他血影蛋白的缺陷与退行性疾病和精神疾病有关。在最近发表的工作中,我们在小鼠中描述了一种新型αII血影蛋白变体,它会导致进行性共济失调并伴有广泛的神经退行性变化。这种变体的作用不同,因为该突变不是破坏血影蛋白的组成型配体结合功能,而是改变其对钙和钙调蛋白调节信号通路的反应,包括其对钙蛋白酶激活的反应。因此,它代表了一种新型血影蛋白病,靶向钙和酪氨酸激酶信号汇聚的关键调节途径。在这里,我们简要讨论血影蛋白在神经元过程中的各种作用以及控制其参与神经元生长、组织和重塑的钙激活调节输入。我们假设神经元血影蛋白支架的损伤可能是许多神经退行性疾病共同的最终途径。因此,针对调节血影蛋白功能的途径可能会提供新的治疗干预途径。