Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark.
Department of Biology, Lund University, SE-22362, Lund, Sweden.
Plant J. 2021 Nov;108(4):912-959. doi: 10.1111/tpj.15495. Epub 2021 Oct 28.
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
植物线粒体的研究始于 1950 年左右,当时首次从动植物组织中分离出线粒体。最初的 35 年用于通过生化和生理方法确定植物线粒体和植物呼吸的基本特性。观察到一些独特的特性(与哺乳动物线粒体相比):(i)以高速率氧化苹果酸、甘氨酸和细胞质 NAD(P)H 的能力;(ii)对鱼藤酮的部分不敏感性,事实证明这是由于在内线粒体膜的内表面上除了经典的 NADH 脱氢酶复合物 I 之外还存在第二种 NADH 脱氢酶;(iii)对氰化物的部分不敏感性,事实证明这是由于替代氧化酶的存在,该酶也位于内线粒体膜的内表面上,除了经典的复合物 IV、细胞色素氧化酶之外。大约在 1985 年出现分子生物学方法之后,又出现了基因组学,进一步发现了独特的特性:(iv)植物线粒体 DNA(mtDNA)比哺乳动物 mtDNA 大 10-600 倍,但它仅包含大约 50%更多的基因;(v)植物 mtDNA 保留了标准遗传密码,并且与点突变相比具有低的变异率,但具有高的重组活性;(vi)线粒体 mRNA 成熟包括一组独特的复杂的加工、剪接和编辑(在数百个位点);(vii)mtDNA 中的重组产生新的阅读框,可导致雄性不育;(viii)植物线粒体具有一个大型蛋白质组,包含 2000-3000 种不同的蛋白质,其中包含许多独特的蛋白质,例如 200-300 种五肽重复蛋白。我们描述了植物线粒体的结构和功能的现状和相当详细的图片,以及独特的特性如何使它们的代谢更加灵活,从而使它们能够参与植物细胞中的许多不同过程,例如光合作用、光呼吸、CAM 和 C4 代谢、产热、温度控制、应激抗性机制、程序性细胞死亡和基因组进化。然而,仍然难以理解代谢和 mtDNA 表达的调节如何在细胞水平上起作用,以及来自线粒体的逆行信号如何协调所有这些过程。