Suppr超能文献

聚肌苷酸和瑞喹莫德瘤内联合治疗协同作用诱导肿瘤相关巨噬细胞产生有效的系统性抗肿瘤免疫。

Intratumoral combination therapy with poly(I:C) and resiquimod synergistically triggers tumor-associated macrophages for effective systemic antitumoral immunity.

机构信息

IRCCS Humanitas Research Hospital, Rozzano, Italy.

Humanitas University, Pieve Emanuele, Italy.

出版信息

J Immunother Cancer. 2021 Sep;9(9). doi: 10.1136/jitc-2021-002408.

Abstract

BACKGROUND

Tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer and hinder the antitumoral efficacy of most treatments currently applied in the clinic. Previous studies have evaluated the antitumoral immune response triggered by (TLR) agonists, such as poly(I:C), imiquimod (R837) or resiquimod (R848) as monotherapies; however, their combination for the treatment of cancer has not been explored. This study investigates the antitumoral efficacy and the macrophage reprogramming triggered by poly(I:C) combined with R848 or with R837, versus single treatments.

METHODS

TLR agonist treatments were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry using primary human and murine M-CSF-differentiated macrophages. Cytotoxic activity of TLR-treated macrophages toward cancer cells was evaluated with an in vitro functional assay by flow cytometry. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry, RT-qPCR, multispectral immunophenotyping, quantitative proteomic experiments, and protein-protein interaction analysis.

RESULTS

Results demonstrated the higher efficacy of poly(I:C) combined with R848 versus single treatments or combined with R837 to polarize macrophages toward M1-like antitumor effectors in vitro. In vivo, the intratumoral synergistic combination of poly(I:C)+R848 significantly prevented tumor growth and metastasis in lung cancer and fibrosarcoma immunocompetent murine models. Regressing tumors showed increased infiltration of macrophages with a higher M1:M2 ratio, recruitment of CD4 and CD8 T cells, accompanied by a reduction of immunosuppressive CD206 TAMs and FOXP3/CD4 T cells. The depletion of both CD4 and CD8 T cells resulted in complete loss of treatment efficacy. Treated mice acquired systemic antitumoral response and resistance to tumor rechallenge mediated by boosted macrophage cytotoxic activity and T-cell proliferation. Proteomic experiments validate the superior activation of innate immunity by poly(I:C)+R848 combination versus single treatments or poly(I:C)+R837, and protein-protein-interaction network analysis reveal the key activation of the STAT1 pathway.

DISCUSSION

These findings demonstrate the antitumor immune responses mediated by macrophage activation on local administration of poly(I:C)+R848 combination and support the intratumoral application of this therapy to patients with solid tumors in the clinic.

摘要

背景

肿瘤相关巨噬细胞(TAMs)发挥关键的免疫抑制作用,限制免疫系统对抗癌症的能力,并阻碍目前临床上应用的大多数治疗方法的抗肿瘤疗效。先前的研究已经评估了(TLR)激动剂(如 poly(I:C)、咪喹莫特(R837)或雷西莫特(R848))作为单一疗法触发的抗肿瘤免疫反应;然而,它们的组合用于癌症治疗尚未得到探索。本研究调查了 poly(I:C)联合 R848 或 R837 治疗与单一治疗相比,触发的抗肿瘤疗效和巨噬细胞重编程。

方法

通过 Alamar Blue、ELISA 和流式细胞术评估 TLR 激动剂治疗对原代人和鼠 M-CSF 分化的巨噬细胞的毒性和免疫刺激活性。通过流式细胞术的体外功能测定评估 TLR 处理的巨噬细胞对癌细胞的细胞毒性活性。对于体内实验,使用 CMT167 肺癌模型和转移到肺部的 MN/MCA1 纤维肉瘤模型;通过流式细胞术、RT-qPCR、多光谱免疫表型分析、定量蛋白质组学实验和蛋白质-蛋白质相互作用分析评估肿瘤浸润白细胞。

结果

结果表明,poly(I:C)联合 R848 比单一治疗或联合 R837 更能有效地将巨噬细胞极化为 M1 样抗肿瘤效应物。在体内,poly(I:C)+R848 联合在肿瘤内协同作用,显著抑制肺癌和纤维肉瘤免疫活性小鼠模型中的肿瘤生长和转移。消退的肿瘤显示浸润巨噬细胞增加,M1:M2 比值更高,招募 CD4 和 CD8 T 细胞,同时减少免疫抑制性 CD206 TAMs 和 FOXP3/CD4 T 细胞。耗尽 CD4 和 CD8 T 细胞会导致治疗效果完全丧失。经治疗的小鼠获得了全身性抗肿瘤反应和对肿瘤再挑战的抵抗力,这是由增强的巨噬细胞细胞毒性活性和 T 细胞增殖介导的。蛋白质组学实验验证了 poly(I:C)+R848 联合治疗与单一治疗或 poly(I:C)+R837 相比,对固有免疫的优越激活,蛋白质-蛋白质相互作用网络分析揭示了 STAT1 途径的关键激活。

讨论

这些发现表明,局部给予 poly(I:C)+R848 联合治疗可介导巨噬细胞激活的抗肿瘤免疫反应,并支持该疗法在临床上用于实体肿瘤患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ac7/8449972/2dadfb5460fe/jitc-2021-002408f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验