Wu Xiang, Yao Yuan, Dai Yibin, Diao Pengfei, Zhang Yuchao, Zhang Ping, Li Sheng, Jiang Hongbing, Cheng Jie
Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, China.
Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, China.
Ann Transl Med. 2021 Aug;9(15):1220. doi: 10.21037/atm-21-631.
We aimed to develop novel diagnostic and prognostic signatures based on preoperative inflammatory, immunological, and nutritional parameters in blood (PIINPBs) by machine learning algorithms for patients with oral squamous cell carcinoma (OSCC).
A total of 486 OSCC patients and 200 age and gender-matched non-OSCC patients who were diagnosed and treated at our institution for noninfectious, nontumor diseases were retrospectively enrolled and divided into training and validation cohorts. Based on PIINPB, 6 machine learning classifiers including random forest, support vector machine, extreme gradient boosting, naive Bayes, neural network, and logistic regression were used to derive diagnostic models, while least absolute shrinkage and selection operator (LASSO) analyses were employed to construct prognostic signatures. A novel prognostic nomogram integrating a PIINPB-derived prognostic signature and selected clinicopathological parameters was further developed. Performances of these signatures were assessed by receiver operating characteristic (ROC) curves, calibrating curves, and decision tree.
Diagnostic models developed by machine learning algorithms from 13 PIINPBs, which included counts of white blood cells (WBC), neutrophils (N), monocytes (M), lymphocytes (L), platelets (P), albumin (ALB), and hemoglobin (Hb), along with albumin-globulin ratio (A/G), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), systemic immune-inflammation index (SII), and prognostic nutritional index (PNI), displayed satisfactory discriminating capabilities in patients with or without OSCC, and among OSCC patients with diverse pathological grades and clinical stages. A prognostic signature based on 6 survival-associated PIINPBs (L, P, PNI, LMR, SII, A/G) served as an independent factor to predict patient survival. Moreover, a novel nomogram integrating prognostic signature and tumor size, pathological grade, cervical node metastasis, and clinical stage significantly enhanced prognostic power [3-year area under the curve (AUC) =0.825; 5-year AUC =0.845].
Our results generated novel and robust diagnostic and prognostic signatures derived from PIINPBs by machine learning for OSCC. Performance of these signatures suggest the potential for PIINPBs to supplement current regimens and provide better patient stratification and prognostic prediction.
我们旨在通过机器学习算法,基于口腔鳞状细胞癌(OSCC)患者术前血液中的炎症、免疫和营养参数(PIINPBs)开发新的诊断和预后特征。
回顾性纳入了在我们机构诊断和治疗的486例OSCC患者以及200例年龄和性别匹配的非OSCC患者,这些非OSCC患者患有非感染性、非肿瘤性疾病,并将其分为训练队列和验证队列。基于PIINPB,使用包括随机森林、支持向量机、极端梯度提升、朴素贝叶斯、神经网络和逻辑回归在内的6种机器学习分类器来推导诊断模型,同时采用最小绝对收缩和选择算子(LASSO)分析来构建预后特征。进一步开发了一种整合PIINPB衍生的预后特征和选定临床病理参数的新型预后列线图。通过受试者操作特征(ROC)曲线、校准曲线和决策树评估这些特征的性能。
由机器学习算法从13个PIINPBs推导的诊断模型,包括白细胞(WBC)、中性粒细胞(N)、单核细胞(M)、淋巴细胞(L)、血小板(P)、白蛋白(ALB)和血红蛋白(Hb)的计数,以及白蛋白球蛋白比值(A/G)、中性粒细胞淋巴细胞比值(NLR)、血小板淋巴细胞比值(PLR)、淋巴细胞单核细胞比值(LMR)、全身免疫炎症指数(SII)和预后营养指数(PNI),在有或无OSCC的患者中,以及在不同病理分级和临床分期的OSCC患者中均显示出令人满意的区分能力。基于6个与生存相关的PIINPBs(L、P、PNI、LMR、SII、A/G)的预后特征可作为预测患者生存的独立因素。此外,一种整合预后特征与肿瘤大小、病理分级、颈部淋巴结转移和临床分期的新型列线图显著增强了预后能力[3年曲线下面积(AUC)=0.825;5年AUC =0.845]。
我们的结果通过机器学习为OSCC生成了源自PIINPBs的新型且强大的诊断和预后特征。这些特征的性能表明PIINPBs有可能补充当前治疗方案,并提供更好的患者分层和预后预测。