Malkowski Thomas F, Sacci Robert L, McAuliffe Rebecca D, Acharya Shree Ram, Cooper Valentino R, Dudney Nancy J, Veith Gabriel M
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Inorg Chem. 2021 Oct 4;60(19):14831-14843. doi: 10.1021/acs.inorgchem.1c02136. Epub 2021 Sep 17.
The performance of single-ion conductors is highly sensitive to the material's defect chemistry. Tuning these defects is limited for solid-state reactions as they occur at particle-particle interfaces, which provide a complex evolving energy landscape for atomic rearrangement and product formation. In this report, we investigate the (1) order of addition and (2) lithium precursor decomposition temperature and their effect on the synthesis and grain boundary conductivity of the perovskite lithium lanthanum titanium oxide (LLTO). We use an intimately mixed sol-gel, a solid-state reaction of Li precursor + LaO + TiO, and Li precursor + amorphous LaTiO as different chemical routes to change the way in which the elements are brought together. The results show that the perovskite can accommodate a wide range of Li deficiencies (upward of 50%) while maintaining the tetragonal LLTO structure, indicating that X-ray diffraction (XRD) is insufficient to fully characterize the chemical nature of the product (i.e., Li-deficient LLTO may behave differently than stoichiometric LLTO). Variations in the relative intensities of different reflections in XRD suggest variations in the La ordering within the crystal structure between synthesis methods. Furthermore, the choice of the precursor and the order of addition of the reactants lower the time required to form a pure phase. Density functional theory calculations of the formation energy of possible reaction intermediates support the hypothesis that a greater thermodynamic driving force to form LLTO leads to a greater LLTO yield. The retention of lithium is correlated with the thermal decomposition temperature of the Li precursor and the starting material mixing strategy. Taking the results together suggests that cations that share a site with Li should be mixed early to avoid ordering. Such cation ordering inhibits Li motion, leading to higher Li ion resistance.
单离子导体的性能对材料的缺陷化学高度敏感。对于固态反应而言,调整这些缺陷存在局限性,因为固态反应发生在颗粒与颗粒的界面处,这为原子重排和产物形成提供了一个复杂且不断变化的能量态势。在本报告中,我们研究了(1)添加顺序和(2)锂前驱体的分解温度及其对钙钛矿型锂镧钛氧化物(LLTO)的合成及晶界电导率的影响。我们采用紧密混合的溶胶 - 凝胶法、锂前驱体 + LaO + TiO的固态反应以及锂前驱体 + 非晶态LaTiO作为不同的化学路径,来改变元素结合的方式。结果表明,钙钛矿能够容纳大范围的锂缺陷(超过50%),同时保持四方相LLTO结构,这表明X射线衍射(XRD)不足以全面表征产物的化学性质(即,缺锂的LLTO可能与化学计量比的LLTO表现不同)。XRD中不同衍射峰相对强度的变化表明合成方法之间晶体结构中La有序度存在差异。此外,前驱体的选择和反应物的添加顺序缩短了形成纯相所需的时间。对可能反应中间体形成能的密度泛函理论计算支持了这样的假设,即形成LLTO的更大热力学驱动力会导致更高的LLTO产率。锂的保留与锂前驱体的热分解温度和起始材料混合策略相关。综合这些结果表明,与锂共享一个位点的阳离子应尽早混合以避免有序化。这种阳离子有序化会抑制锂的移动,导致更高的锂离子电阻。