Suppr超能文献

基于跨域数据的半监督左心房分割的自适应层次双一致性。

Adaptive Hierarchical Dual Consistency for Semi-Supervised Left Atrium Segmentation on Cross-Domain Data.

出版信息

IEEE Trans Med Imaging. 2022 Feb;41(2):420-433. doi: 10.1109/TMI.2021.3113678. Epub 2022 Feb 2.

Abstract

Semi-supervised learning provides great significance in left atrium (LA) segmentation model learning with insufficient labelled data. Generalising semi-supervised learning to cross-domain data is of high importance to further improve model robustness. However, the widely existing distribution difference and sample mismatch between different data domains hinder the generalisation of semi-supervised learning. In this study, we alleviate these problems by proposing an Adaptive Hierarchical Dual Consistency (AHDC) for the semi-supervised LA segmentation on cross-domain data. The AHDC mainly consists of a Bidirectional Adversarial Inference module (BAI) and a Hierarchical Dual Consistency learning module (HDC). The BAI overcomes the difference of distributions and the sample mismatch between two different domains. It mainly learns two mapping networks adversarially to obtain two matched domains through mutual adaptation. The HDC investigates a hierarchical dual learning paradigm for cross-domain semi-supervised segmentation based on the obtained matched domains. It mainly builds two dual-modelling networks for mining the complementary information in both intra-domain and inter-domain. For the intra-domain learning, a consistency constraint is applied to the dual-modelling targets to exploit the complementary modelling information. For the inter-domain learning, a consistency constraint is applied to the LAs modelled by two dual-modelling networks to exploit the complementary knowledge among different data domains. We demonstrated the performance of our proposed AHDC on four 3D late gadolinium enhancement cardiac MR (LGE-CMR) datasets from different centres and a 3D CT dataset. Compared to other state-of-the-art methods, our proposed AHDC achieved higher segmentation accuracy, which indicated its capability in the cross-domain semi-supervised LA segmentation.

摘要

半监督学习在利用有限的标注数据进行左心房 (LA) 分割模型学习方面具有重要意义。将半监督学习推广到跨领域数据对于进一步提高模型鲁棒性具有重要意义。然而,不同数据域之间广泛存在的分布差异和样本不匹配阻碍了半监督学习的推广。在这项研究中,我们通过提出一种用于跨领域数据的自适应层次双重一致性 (AHDC) 来缓解这些问题,用于半监督 LA 分割。AHDC 主要由双向对抗推理模块 (BAI) 和层次双重一致性学习模块 (HDC) 组成。BAI 克服了两个不同领域之间的分布差异和样本不匹配。它主要通过相互适应学习两个映射网络来获得两个匹配的领域。HDC 基于获得的匹配域,研究了一种用于跨领域半监督分割的层次双重学习范例。它主要构建两个双重建模网络,以挖掘域内和域间的互补信息。对于域内学习,在双重建模目标上应用一致性约束,以挖掘互补建模信息。对于跨域学习,在两个双重建模网络对 LA 建模之间应用一致性约束,以挖掘不同数据域之间的互补知识。我们在四个来自不同中心的 3D 晚期钆增强心脏磁共振 (LGE-CMR) 数据集和一个 3D CT 数据集上展示了我们提出的 AHDC 的性能。与其他最先进的方法相比,我们提出的 AHDC 实现了更高的分割准确性,这表明它在跨领域半监督 LA 分割方面的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验