Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada.
Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada.
EBioMedicine. 2021 Sep;71:103503. doi: 10.1016/j.ebiom.2021.103503. Epub 2021 Sep 15.
Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aβ) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aβ drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aβ levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aβ triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain.
We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aβ deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology.
Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aβ depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD.
Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation.
None.
认知能力下降导致痴呆,伴随着神经纤维缠结(NFT)中由过度磷酸化 tau 蛋白(tau)组成的淀粉样β(Aβ)的积累,这是阿尔茨海默病(AD)的先前公认的标志。我们之前发现 AD 患者的脑标本存在血管过度生成,并且与这一观察结果一致,我们证明 Aβ 的过度表达会导致脑血管新生,导致血管过度生成以及紧密连接破坏和血脑屏障(BBB)通透性增加 AD 动物模型中的通透性。随后,我们证明了当促血管生成 Aβ 水平降低时,淀粉样斑块负担和脑血管发病机制会消退。基于这些数据,我们提出了 AD 病因学的范例,即作为对脑血流(CBF)受损的代偿反应,Aβ 引发潜在的血管新生,这是 AD 的传统标志。因此,我们在此提供证据表明,重新利用抗癌药物来调节脑血管新生,而不是直接针对淀粉样蛋白级联反应,可能为 AD 和相关的脑血管疾病提供有效的治疗方法。
我们探索了抗癌药物阿昔替尼是否可以抑制 AD 动物模型中异常的脑血管新生变化,减少 Aβ 沉积并逆转认知能力下降。在阿昔替尼治疗一个月后,我们使用一系列测试来评估老年 Tg2576 AD 小鼠的认知和记忆能力,并使用分子分析来证明淀粉样斑块、BBB 渗漏、血管过度生成和相关疾病病理学的减少。
使用抗癌药物阿昔替尼靶向 AD 中的促血管生成途径,可显著降低脑血管新生,恢复 BBB 完整性,解决紧密连接发病机制,减少斑块中的 Aβ 沉积,并有效地恢复 AD 临床前小鼠模型中的记忆和认知表现。
在类似的方法中调节新生血管生成,用于治疗癌症中的异常血管生成,也用于治疗年龄相关性黄斑变性(AMD)的湿性形式,为干预 AD 提供了另一种治疗策略,值得临床研究。
无。