Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, Guangxi, 530021, China.
Biomaterials. 2021 Oct;277:121125. doi: 10.1016/j.biomaterials.2021.121125. Epub 2021 Sep 10.
Gallium indium (GaIn) alloy as a kind of liquid metal (LM) with unique chemical and physical properties has attracted increasing attention for its potential biomedical applications. Herein, a series of core-shell GaIn@Metal (Metal: Pt, Au, Ag, and Cu) heterogeneous nanoparticles (NPs) are obtained by a simple in-situ reduction method. Take core-shell GaIn@Pt NPs for example, the synthesized GaIn@Pt NPs after Pt growth on their surface showed significantly improved photothermal conversion efficiency (PCE) and thermal stability under near-infrared (NIR) II light irradiation. Moreover, the core-shell GaIn@Pt NPs also exhibited good Fenton-like catalytic effect due to the presence of Pt on their surface, and could convert tumor endogenous HO to generate reactive oxygen species (ROS) for cancer cell killing. With biocompatible polyethylene glycol (PEG) modification, such GaIn@Pt-PEG NPs showed efficient tumor homing after intravenous injection, and could lead to effective NIR II triggered photothermal-chemodynamic synergistic therapy of tumors as evidenced in a mouse tumor model. Our work highlights the ingenious use of the chemical properties of metals, providing a rather simple route for the surface engineering of LM-based multifunctional nanoplatforms to achieve a variety of functionalities.
镓铟(GaIn)合金作为一种具有独特化学和物理性质的液态金属(LM),因其在潜在的生物医学应用中具有吸引力而受到越来越多的关注。在此,通过简单的原位还原法获得了一系列核壳 GaIn@金属(金属:Pt、Au、Ag 和 Cu)异质纳米颗粒(NPs)。以核壳 GaIn@Pt NPs 为例,在其表面生长 Pt 后,合成的 GaIn@Pt NPs 显示出在近红外(NIR)II 光照射下显著提高的光热转换效率(PCE)和热稳定性。此外,由于表面存在 Pt,核壳 GaIn@Pt NPs 还表现出良好的类芬顿催化效应,可将肿瘤内源性 HO 转化为活性氧(ROS),从而杀死癌细胞。经过生物相容性聚乙二醇(PEG)修饰后,这种 GaIn@Pt-PEG NPs 在静脉注射后具有高效的肿瘤归巢能力,并能够在小鼠肿瘤模型中实现有效的 NIR II 触发光热-化学动力学协同治疗。我们的工作强调了金属化学性质的巧妙利用,为基于 LM 的多功能纳米平台的表面工程提供了一种相当简单的途径,以实现多种功能。