Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
Department of Chemistry and Pharmaceutical Sciences, VU Amsterdam, Amsterdam, The Netherlands.
Nat Commun. 2021 Sep 17;12(1):5493. doi: 10.1038/s41467-021-25814-x.
Macromolecular dynamics manifest as disorder in structure determination, which is subsequently accounted for by displacement parameters (also called temperature factors, or B-factors) or alternate conformations. Though B-factors contain detailed information about structural dynamics, they are the total of multiple sources of disorder, making them difficult to interpret and thus little-used in structural analysis. We report here an analytical approach for decomposing molecular disorder into a parsimonious hierarchical series of contributions, providing an intuitive basis for quantitative structural-dynamics analysis. We demonstrate the decomposition of disorder on example SARS-CoV-2 and STEAP4 structures, from both crystallographic and cryo-electron microscopy data, and reveal how understanding of the macromolecular disorder leads to deeper understanding of molecular motions and flexibility, and suggests hypotheses for molecular mechanisms.
大分子动力学表现为结构测定中的无序,随后通过位移参数(也称为温度因子或 B 因子)或替代构象来解释。尽管 B 因子包含有关结构动力学的详细信息,但它们是多种无序源的总和,使得它们难以解释,因此在结构分析中很少使用。我们在这里报告了一种分析方法,可将分子无序分解为简约的层次系列贡献,为定量结构动力学分析提供直观的基础。我们展示了来自晶体学和冷冻电子显微镜数据的 SARS-CoV-2 和 STEAP4 结构的无序分解,并揭示了对大分子无序的理解如何导致对分子运动和灵活性的更深入理解,并提出了分子机制的假设。