Department of Radiology and Nuclear Medicine, Erasmus MC, Medical Center, Rotterdam, the Netherlands.
Department of Psychiatry, Erasmus MC, Medical Center, Rotterdam, the Netherlands.
Commun Biol. 2021 Sep 17;4(1):1094. doi: 10.1038/s42003-021-02622-z.
Applying deep learning in population genomics is challenging because of computational issues and lack of interpretable models. Here, we propose GenNet, a novel open-source deep learning framework for predicting phenotypes from genetic variants. In this framework, interpretable and memory-efficient neural network architectures are constructed by embedding biologically knowledge from public databases, resulting in neural networks that contain only biologically plausible connections. We applied the framework to seventeen phenotypes and found well-replicated genes such as HERC2 and OCA2 for hair and eye color, and novel genes such as ZNF773 and PCNT for schizophrenia. Additionally, the framework identified ubiquitin mediated proteolysis, endocrine system and viral infectious diseases as most predictive biological pathways for schizophrenia. GenNet is a freely available, end-to-end deep learning framework that allows researchers to develop and use interpretable neural networks to obtain novel insights into the genetic architecture of complex traits and diseases.
深度学习在群体基因组学中的应用具有挑战性,因为存在计算问题和缺乏可解释的模型。在这里,我们提出了 GenNet,这是一个新颖的开源深度学习框架,用于从遗传变异预测表型。在这个框架中,通过嵌入来自公共数据库的生物学知识来构建可解释和内存高效的神经网络架构,从而构建仅包含生物学上合理连接的神经网络。我们将该框架应用于十七种表型,并发现了头发和眼睛颜色等可重复的基因,如 HERC2 和 OCA2,以及精神分裂症的新型基因,如 ZNF773 和 PCNT。此外,该框架确定了泛素介导的蛋白水解、内分泌系统和病毒传染病作为精神分裂症最具预测性的生物途径。GenNet 是一个免费的、端到端的深度学习框架,允许研究人员开发和使用可解释的神经网络,从而深入了解复杂特征和疾病的遗传结构。